Displaying 661 – 680 of 1525

Showing per page

Łojasiewicz inequalities for sets definable in the structure exp

Ta Lê Loi (1995)

Annales de l'institut Fourier

We consider some variants of Łojasiewicz inequalities for the class of subsets of Euclidean spaces definable from addition, multiplication and exponentiation : Łojasiewicz-type inequalities, global Łojasiewicz inequalities with or without parameters. The rationality of Łojasiewicz’s exponents for this class is also proved.

Mapping properties of integral averaging operators

H. Heinig, G. Sinnamon (1998)

Studia Mathematica

Characterizations are obtained for those pairs of weight functions u and v for which the operators T f ( x ) = ʃ a ( x ) b ( x ) f ( t ) d t with a and b certain non-negative functions are bounded from L u p ( 0 , ) to L v q ( 0 , ) , 0 < p,q < ∞, p≥ 1. Sufficient conditions are given for T to be bounded on the cones of monotone functions. The results are applied to give a weighted inequality comparing differences and derivatives as well as a weight characterization for the Steklov operator.

Matchings and the variance of Lipschitz functions

Franck Barthe, Neil O'Connell (2009)

ESAIM: Probability and Statistics

We are interested in the rate function of the moderate deviation principle for the two-sample matching problem. This is related to the determination of 1-Lipschitz functions with maximal variance. We give an exact solution for random variables which have normal law, or are uniformly distributed on the Euclidean ball.

Minkowski’s inequality and sums of squares

Péter Frenkel, Péter Horváth (2014)

Open Mathematics

Positive polynomials arising from Muirhead’s inequality, from classical power mean and elementary symmetric mean inequalities and from Minkowski’s inequality can be rewritten as sums of squares.

Currently displaying 661 – 680 of 1525