Displaying 101 – 120 of 538

Showing per page

Bernstein’s analyticity theorem for quantum differences

Tord Sjödin (2007)

Czechoslovak Mathematical Journal

We consider real valued functions f defined on a subinterval I of the positive real axis and prove that if all of f ’s quantum differences are nonnegative then f has a power series representation on I . Further, if the quantum differences have fixed sign on I then f is analytic on I .

Bounds for quotients in rings of formal power series with growth constraints

Vincent Thilliez (2002)

Studia Mathematica

In rings Γ M of formal power series in several variables whose growth of coefficients is controlled by a suitable sequence M = ( M l ) l 0 (such as rings of Gevrey series), we find precise estimates for quotients F/Φ, where F and Φ are series in Γ M such that F is divisible by Φ in the usual ring of all power series. We give first a simple proof of the fact that F/Φ belongs also to Γ M , provided Γ M is stable under derivation. By a further development of the method, we obtain the main result of the paper, stating that...

Calculations of graded ill-known sets

Masahiro Inuiguchi (2014)

Kybernetika

To represent a set whose members are known partially, the graded ill-known set is proposed. In this paper, we investigate calculations of function values of graded ill-known sets. Because a graded ill-known set is characterized by a possibility distribution in the power set, the calculations of function values of graded ill-known sets are based on the extension principle but generally complex. To reduce the complexity, lower and upper approximations of a given graded ill-known set are used at the...

Caractérisation des anneaux noethériens de séries formelles à croissance controlée. Application à la synthèse spectrale.

Jacques Chaumat, Anne-Marie Chollet (1997)

Publicacions Matemàtiques

Given a subring of the ring of formal power series defined by the growth of the coefficients, we prove a necessary and sufficient condition for it to be a noetherian ring. As a particular case, we show that the ring of Gevrey power series is a noetherian ring. Then, we get a spectral synthesis theorem for some classes of ultradifferentiable functions.

Characterization of Globally Lipschitz Nemytskiĭ Operators Between Spaces of Set-Valued Functions of Bounded φ-Variation in the Sense of Riesz

N. Merentes, J. L. Sánchez Hernández (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Let (X,∥·∥) and (Y,∥·∥) be two normed spaces and K be a convex cone in X. Let CC(Y) be the family of all non-empty convex compact subsets of Y. We consider the Nemytskiĭ operators, i.e. the composition operators defined by (Nu)(t) = H(t,u(t)), where H is a given set-valued function. It is shown that if the operator N maps the space R V φ ( [ a , b ] ; K ) into R W φ ( [ a , b ] ; C C ( Y ) ) (both are spaces of functions of bounded φ-variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form H(t,u(t)) = A(t)u(t)...

Currently displaying 101 – 120 of 538