Displaying 21 – 40 of 290

Showing per page

The Banach–Mazur game and σ-porosity

Miroslav Zelený (1996)

Fundamenta Mathematicae

It is well known that the sets of the first category in a metric space can be described using the so-called Banach-Mazur game. We will show that if we change the rules of the Banach-Mazur game (by forcing the second player to choose large balls) then we can describe sets which can be covered by countably many closed uniformly porous sets. A characterization of σ-very porous sets and a sufficient condition for σ-porosity are also given in the terminology of games.

The Banach-Saks property and Haar null sets

Eva Matoušková (1998)

Commentationes Mathematicae Universitatis Carolinae

A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space X has the Banach-Saks property, then closed and convex subsets of X with empty interior are Haar null.

The Beta(p,1) extensions of the random (uniform) Cantor sets

Dinis D. Pestana, Sandra M. Aleixo, J. Leonel Rocha (2009)

Discussiones Mathematicae Probability and Statistics

Starting from the random extension of the Cantor middle set in [0,1], by iteratively removing the central uniform spacing from the intervals remaining in the previous step, we define random Beta(p,1)-Cantor sets, and compute their Hausdorff dimension. Next we define a deterministic counterpart, by iteratively removing the expected value of the spacing defined by the appropriate Beta(p,1) order statistics. We investigate the reasons why the Hausdorff dimension of this deterministic fractal is greater...

The box-counting dimension for geometrically finite Kleinian groups

B. Stratmann, Mariusz Urbański (1996)

Fundamenta Mathematicae

We calculate the box-counting dimension of the limit set of a general geometrically finite Kleinian group. Using the 'global measure formula' for the Patterson measure and using an estimate on the horoball counting function we show that the Hausdorff dimension of the limit set is equal to both: the box-counting dimension and packing dimension of the limit set. Thus, by a result of Sullivan, we conclude that for a geometrically finite group these three different types of dimension coincide with the...

The cancellation law for pseudo-convolution

Andrea Stupňanová (2005)

Kybernetika

Cancellation law for pseudo-convolutions based on triangular norms is discussed. In more details, the cases of extremal t-norms T M and T D , of continuous Archimedean t-norms, and of general continuous t-norms are investigated. Several examples are included.

Currently displaying 21 – 40 of 290