The search session has expired. Please query the service again.
Displaying 521 –
540 of
3925
We present a new necessary and sufficient condition for the asymptotic stability of Markov operators acting on the space of signed measures. The proof is based on some special properties of the total variation norm. Our method allows us to consider the Tjon-Wu equation in a linear form. More precisely a new proof of the asymptotic stability of a stationary solution of the Tjon-Wu equation is given.
We study the asymptotic stability of densities for piecewise convex maps with flat bottoms or a neutral fixed point. Our main result is an improvement of Lasota and Yorke's result ([5], Theorem 4).
We describe quantization designs which lead to asymptotically and order optimal functional quantizers for Gaussian processes in a Hilbert space setting. Regular variation of the eigenvalues of the covariance operator plays a crucial role to achieve these rates. For the development of a constructive quantization scheme we rely on the knowledge of the eigenvectors of the covariance operator in order to transform the problem into a finite dimensional quantization problem of normal distributions. ...
The atomic surfaces of unimodular Pisot substitutions of irreducible type have been studied by many authors. In this article, we study the atomic surfaces of Pisot substitutions of reducible type.As an analogue of the irreducible case, we define the stepped-surface and the dual substitution over it. Using these notions, we give a simple proof to the fact that atomic surfaces form a self-similar tiling system. We show that the stepped-surface possesses the quasi-periodic property, which implies that...
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...
On explicite une conjugaison en mesure entre le décalage sur le système dynamique associé à une substitution primitive et une transformation adique sur le support d'un sous-shift de type fini, à savoir l'ensemble des chemins d'un automate dit des préfixes-suffixes. En caractérisant les préimages par la conjugaison des chemins périodiques de l'automate, on montre que cette conjugaison est injective sauf sur un ensemble dénombrable, sur lequel elle est finie-à-un. On en déduit l'existence d'une suite...
Let α be an isometric automorphism of the algebra of bounded linear operators in (p ≥ 1). Then α transforms conditional expectations into conditional expectations if and only if α is induced by a measure preserving isomorphism of [0, 1].
The notion of exact uniform rank, EUR, of an automorphism of a probability Lebesgue space is defined. It is shown that each ergodic automorphism with finite EUR is finite extension of some automorphism with rational discrete spectrum. Moreover, for automorphisms with finite EUR, the upper bounds of EUR of their factors and ergodic iterations are computed.
Let S be a locally compact (σ-compact) group or semigroup, and let T(t) be a continuous representation of S by contractions in a Banach space X. For a regular probability μ on S, we study the convergence of the powers of the μ-average Ux = ʃ T(t)xdμ(t). Our main results for random walks on a group G are: (i) The following are equivalent for an adapted regular probability on G: μ is strictly aperiodic; converges weakly for every continuous unitary representation of G; U is weakly mixing for any...
This paper is meant as a (short and partial) introduction to the study of the geometry of Carnot groups and, more generally, of Carnot-Carathéodory spaces associated with a family of Lipschitz continuous vector fields. My personal interest in this field goes back to a series of joint papers with E. Lanconelli, where this notion was exploited for the study of pointwise regularity of weak solutions to degenerate elliptic partial differential equations. As stated in the title, here we are mainly concerned...
The aim of this manuscript is to determine the relative size of several functions (copulas, quasi– copulas) that are commonly used in stochastic modeling. It is shown that the class of all quasi–copulas that are (locally) associated to a doubly stochastic signed measure is a set of first category in the class of all quasi– copulas. Moreover, it is proved that copulas are nowhere dense in the class of quasi-copulas. The results are obtained via a checkerboard approximation of quasi–copulas.
Currently displaying 521 –
540 of
3925