Displaying 121 – 140 of 205

Showing per page

On random fractals with infinite branching: definition, measurability, dimensions

Artemi Berlinkov (2013)

Annales de l'I.H.P. Probabilités et statistiques

We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of points of discontinuity...

On s-sets in spaces of homogeneous type

Marilina Carena, Marisa Toschi (2015)

Colloquium Mathematicae

Let (X,d,μ) be a space of homogeneous type. We study the relationship between two types of s-sets: relative to a distance and relative to a measure. We find a condition on a closed subset F of X under which F is an s-set relative to the measure μ if and only if F is an s-set relative to δ. Here δ denotes the quasi-distance defined by Macías and Segovia such that (X,δ,μ) is a normal space. In order to prove this result, we prove a covering type lemma and a type of Hausdorff measure based criterion...

On summability of measures with thin spectra

Maria Roginskaya, Michaël Wojciechowski (2004)

Annales de l’institut Fourier

We study different conditions on the set of roots of the Fourier transform of a measure on the Euclidean space, which yield that the measure is absolutely continuous with respect to the Lebesgue measure. We construct a monotone sequence in the real line with this property. We construct a closed subset of d which contains a lot of lines of some fixed direction, with the property that every measure with spectrum contained in this set is absolutely continuous. We also give examples of sets with such property...

On the 1/2 Problem of Besicovitch: quasi-arcs do not contain sharp saw-teeth.

Hany M. Farag (2002)

Revista Matemática Iberoamericana

In this paper we give an alternative proof of our recent result that totally unrectifiable 1-sets which satisfy a measure-theoretic flatness condition at almost every point and sufficiently small scales, satisfy Besicovitch's 1/2-Conjecture which states that the lower spherical density for totally unrectifiable 1-sets should be bounded above by 1/2 at almost every point. This is in contrast to rectifiable 1-sets which actually possess a density equal to unity at almost every point. Our present method...

On the analytic capacity and curvature of some Cantor sets with non-σ-finite length.

Pertti Mattila (1996)

Publicacions Matemàtiques

We show that if a Cantor set E as considered by Garnett in [G2] has positive Hausdorff h-measure for a non-decreasing function h satisfying ∫01 r−3 h(r)2 dr < ∞, then the analytic capacity of E is positive. Our tool will be the Menger three-point curvature and Melnikov’s identity relating it to the Cauchy kernel. We shall also prove some related more general results.

On the conformal gauge of a compact metric space

Matias Carrasco Piaggio (2013)

Annales scientifiques de l'École Normale Supérieure

In this article we study the Ahlfors regular conformal gauge of a compact metric space ( X , d ) , and its conformal dimension dim A R ( X , d ) . Using a sequence of finite coverings of  ( X , d ) , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute dim A R ( X , d ) using the critical exponent Q N associated to the combinatorial modulus.

On the dimension of p -harmonic measure in space

John L. Lewis, Kaj Nyström, Andrew Vogel (2013)

Journal of the European Mathematical Society

Let Ω n , n 3 , and let p , 1 < p < , p 2 , be given. In this paper we study the dimension of p -harmonic measures that arise from non-negative solutions to the p -Laplace equation, vanishing on a portion of Ω , in the setting of δ -Reifenberg flat domains. We prove, for p n , that there exists δ ˜ = δ ˜ ( p , n ) > 0 small such that if Ω is a δ -Reifenberg flat domain with δ < δ ˜ , then p -harmonic measure is concentrated on a set of σ -finite H n 1 -measure. We prove, for p n , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p -harmonic measure...

On the Hausdorff dimension of a family of self-similar sets with complicated overlaps

Balázs Bárány (2009)

Fundamenta Mathematicae

We investigate the properties of the Hausdorff dimension of the attractor of the iterated function system (IFS) {γx,λx,λx+1}. Since two maps have the same fixed point, there are very complicated overlaps, and it is not possible to directly apply known techniques. We give a formula for the Hausdorff dimension of the attractor for Lebesgue almost all parameters (γ,λ), γ < λ. This result only holds for almost all parameters: we find a dense set of parameters (γ,λ) for which the Hausdorff dimension...

On the Hausdorff Dimension of CAT(κ) Surfaces

David Constantine, Jean-François Lafont (2016)

Analysis and Geometry in Metric Spaces

We prove that a closed surface with a CAT(κ) metric has Hausdorff dimension = 2, and that there are uniform upper and lower bounds on the two-dimensional Hausdorff measure of small metric balls. We also discuss a connection between this uniformity condition and some results on the dynamics of the geodesic flow for such surfaces. Finally,we give a short proof of topological entropy rigidity for geodesic flow on certain CAT(−1) manifolds.

On the Hausdorff dimension of certain self-affine sets

Abercrombie Alex G.., Nair R. (2002)

Studia Mathematica

A subset E of ℝⁿ is called self-affine with respect to a collection ϕ₁,...,ϕₜ of affinities if E is the union of the sets ϕ₁(E),...,ϕₜ(E). For S ⊂ ℝⁿ let Φ ( S ) = 1 j t ϕ j ( S ) . If Φ(S) ⊂ S let E Φ ( S ) denote k 0 Φ k ( S ) . For given Φ consisting of contracting “pseudo-dilations” (affinities which preserve the directions of the coordinate axes) and subject to further mild technical restrictions we show that there exist self-affine sets E Φ ( S ) of each Hausdorff dimension between zero and a positive number depending on Φ. We also investigate...

Currently displaying 121 – 140 of 205