Displaying 201 – 220 of 2105

Showing per page

Additive functions modulo a countable subgroup of ℝ

Nikos Frantzikinakis (2003)

Colloquium Mathematicae

We solve the mod G Cauchy functional equation f(x+y) = f(x) + f(y) (mod G), where G is a countable subgroup of ℝ and f:ℝ → ℝ is Borel measurable. We show that the only solutions are functions linear mod G.

Algebraic genericity of strict-order integrability

Luis Bernal-González (2010)

Studia Mathematica

We provide sharp conditions on a measure μ defined on a measurable space X guaranteeing that the family of functions in the Lebesgue space L p ( μ , X ) (p ≥ 1) which are not q-integrable for any q > p (or any q < p) contains large subspaces of L p ( μ , X ) (without zero). This improves recent results due to Aron, García, Muñoz, Palmberg, Pérez, Puglisi and Seoane. It is also shown that many non-q-integrable functions can even be obtained on any nonempty open subset of X, assuming that X is a topological space and...

Algebras of Borel measurable functions

Michał Morayne (1992)

Fundamenta Mathematicae

We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.

Almost Everywhere Convergence of Riesz-Raikov Series

Ai Fan (1995)

Colloquium Mathematicae

Let T be a d×d matrix with integer entries and with eigenvalues >1 in modulus. Let f be a lipschitzian function of positive order. We prove that the series n = 1 c n f ( T n x ) converges almost everywhere with respect to Lebesgue measure provided that n = 1 | c n | 2 l o g 2 n < .

Almost Everywhere First-Return Recovery

Michael J. Evans, Paul D. Humke (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We present a new characterization of Lebesgue measurable functions; namely, a function f:[0,1]→ ℝ is measurable if and only if it is first-return recoverable almost everywhere. This result is established by demonstrating a connection between almost everywhere first-return recovery and a first-return process for yielding the integral of a measurable function.

Almost sure asymptotic behaviour of the r -neighbourhood surface area of Brownian paths

Ondřej Honzl, Jan Rataj (2012)

Czechoslovak Mathematical Journal

We show that whenever the q -dimensional Minkowski content of a subset A d exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in d , d 3 .

Currently displaying 201 – 220 of 2105