Displaying 341 – 360 of 2105

Showing per page

Borel extensions of Baire measures in ZFC

Menachem Kojman, Henryk Michalewski (2011)

Fundamenta Mathematicae

We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.

Borel partitions of unity and lower Carathéodory multifunctions

S. Srivastava (1995)

Fundamenta Mathematicae

We prove the existence of Carathéodory selections and representations of a closed convex valued, lower Carathéodory multifunction from a set A in A ( ( X ) ) into a separable Banach space Y, where ℰ is a sub-σ-field of the Borel σ-field ℬ(E) of a Polish space E, X is a Polish space and A is the Suslin operation. As applications we obtain random versions of results on extensions of continuous functions and fixed points of multifunctions. Such results are useful in the study of random differential equations...

Borel parts of the spectrum of an operator and of the operator algebra of a separable Hilbert space

Piotr Niemiec (2012)

Studia Mathematica

For a linear operator T in a Banach space let σ p ( T ) denote the point spectrum of T, let σ p , n ( T ) for finite n > 0 be the set of all λ σ p ( T ) such that dim ker(T - λ) = n and let σ p , ( T ) be the set of all λ σ p ( T ) for which ker(T - λ) is infinite-dimensional. It is shown that σ p ( T ) is σ , σ p , ( T ) is σ δ and for each finite n the set σ p , n ( T ) is the intersection of an σ set and a δ set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space a more detailed decomposition...

Borel sets with σ-compact sections for nonseparable spaces

Petr Holický (2008)

Fundamenta Mathematicae

We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections E x = y Y : ( x , y ) E , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.

Bounded analytic sets in Banach spaces

Volker Aurich (1986)

Annales de l'institut Fourier

Conditions are given which enable or disable a complex space X to be mapped biholomorphically onto a bounded closed analytic subset of a Banach space. They involve on the one hand the Radon-Nikodym property and on the other hand the completeness of the Caratheodory metric of X .

Bounded linear functionals on the space of Henstock-Kurzweil integrable functions

Tuo-Yeong Lee (2009)

Czechoslovak Mathematical Journal

Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.

Boundedly expressible sets

Jaroslav Hančl, Jan Šustek (2009)

Czechoslovak Mathematical Journal

For a given sequence a boundedly expressible set is introduced. Three criteria concerning the Hausdorff dimension of such sets are proved.

Can we assign the Borel hulls in a monotone way?

Márton Elekes, András Máthé (2009)

Fundamenta Mathematicae

A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ G δ hull to every negligible/measurable subset of [0,1]? Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone G δ hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....

Capacitary Orlicz spaces, Calderón products and interpolation

Pilar Silvestre (2014)

Banach Center Publications

These notes are devoted to the analysis on a capacity space, with capacities as substitutes of measures of the Orlicz function spaces. The goal is to study some aspects of the classical theory of Orlicz spaces for these spaces including the classical theory of interpolation.

Currently displaying 341 – 360 of 2105