Previous Page 3

Displaying 41 – 55 of 55

Showing per page

From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields

Erick Herbin, Benjamin Arras, Geoffroy Barruel (2014)

ESAIM: Probability and Statistics

Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph...

From weak to strong types of L E 1 -convergence by the Bocce criterion

Erik Balder, Maria Girardi, Vincent Jalby (1994)

Studia Mathematica

Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space E 1 to be norm convergent (resp. relatively norm compact), thus extending the known results for 1 . Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in E 1 . It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence....

Function spaces on the snowflake

Maryia Kabanava (2011)

Banach Center Publications

We consider two types of Besov spaces on the closed snowflake, defined by traces and with the help of the homeomorphic map from the interval [0,3]. We compare these spaces and characterize them in terms of Daubechies wavelets.

Funzioni B V e tracce

G. Anzellotti, M. Giaquinta (1978)

Rendiconti del Seminario Matematico della Università di Padova

Funzioni ( p , q ) -convesse

Ennio De Giorgi, Antonio Marino, Mario Tosques (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study a class of functions which differ essentially from those which are the sum of a convex function and a regular one and which have interesting properties related to Γ -convergence and to problems with non-convex constraints. In particular some results are given for the associated evolution equations.

Fuzzy equality and convergences for F -observables in F -quantum spaces

Ferdinand Chovanec, František Kôpka (1991)

Applications of Mathematics

We introduce a fuzzy equality for F -observables on an F -quantum space which enables us to characterize different kinds of convergences, and to represent them by pointwise functions on an appropriate measurable space.

Currently displaying 41 – 55 of 55

Previous Page 3