Displaying 61 – 80 of 174

Showing per page

Some complexity results in topology and analysis

Steve Jackson, R. Mauldin (1992)

Fundamenta Mathematicae

If X is a compact metric space of dimension n, then K(X), the n- dimensional kernel of X, is the union of all n-dimensional Cantor manifolds in X. Aleksandrov raised the problem of what the descriptive complexity of K(X) could be. A straightforward analysis shows that if X is an n-dimensional complete separable metric space, then K(X) is a Σ 2 1 or PCA set. We show (a) there is an n-dimensional continuum X in n + 1 for which K(X) is a complete Π 1 1 set. In particular, K ( X ) Π 1 1 - Σ 1 1 ; K(X) is coanalytic but is not an analytic...

Some dimensional results for a class of special homogeneous Moran sets

Xiaomei Hu (2016)

Czechoslovak Mathematical Journal

We construct a class of special homogeneous Moran sets, called { m k } -quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of { m k } k 1 , we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.

Some generic properties of concentration dimension of measure

Józef Myjak, Tomasz Szarek (2003)

Bollettino dell'Unione Matematica Italiana

Let K be a compact quasi self-similar set in a complete metric space X and let M 1 K denote the space of all probability measures on K , endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in M 1 K the lower concentration dimension is equal to 0 , while the upper concentration dimension is equal to the Hausdorff dimension of K .

Some problems for measures on non-standard algebraic structures

Maria Gabriella Graziano (2000)

Bollettino dell'Unione Matematica Italiana

Nell'ultimo ventennio tutta una serie di lavori è stata rivolta allo studio delle misure su strutture algebriche più generali delle algebre di Boole, come i poset e i reticoli ortomodulari, le effect algebras, le BCK-algebras. La teoria così ottenuta interessa l'analisi funzionale, il calcolo delle probabilità e la topologia, più recentemente la teoria delle decisioni. Si presentano alcuni risultati relativi a misure su strutture algebriche non-standard analizzando, in particolare, gli aspetti topologici...

Some problems of measure theory which are related to economic theory.

Heinz J. Skala (1982)

Stochastica

After a short discussion of the first application of measure theoretic tools to economics we show that it is consistent relative to the usual axioms of set theory that there exists no nonatomic probability space of power less than the continuum. This together with other results shows that Aumann's continuum-of-agents methodology provides a sound framework at least for the cooperative theory. There are, however, other problems in economics where, without further assumptions, the continuum may be...

Currently displaying 61 – 80 of 174