Some combinatorial problems on the measurability of functions with respect to invariant extensions of the Lebesgue measure
A. B. Kharazishvili (2010)
Acta Universitatis Carolinae. Mathematica et Physica
Bandt, Christoph (1978)
Abstracta. 6th Winter School on Abstract Analysis
Daniel W. Stroock (1976)
Colloquium Mathematicae
Steve Jackson, R. Mauldin (1992)
Fundamenta Mathematicae
If X is a compact metric space of dimension n, then K(X), the n- dimensional kernel of X, is the union of all n-dimensional Cantor manifolds in X. Aleksandrov raised the problem of what the descriptive complexity of K(X) could be. A straightforward analysis shows that if X is an n-dimensional complete separable metric space, then K(X) is a or PCA set. We show (a) there is an n-dimensional continuum X in for which K(X) is a complete set. In particular, ; K(X) is coanalytic but is not an analytic...
Katz, Nets Hawk, Tao, Terence (2001)
The New York Journal of Mathematics [electronic only]
Martin Kalina, Pavol Zlatoš (1990)
Commentationes Mathematicae Universitatis Carolinae
Secelean, N.A. (2003)
Mathematica Pannonica
Paul Ressel (1977)
Mathematica Scandinavica
Xiaomei Hu (2016)
Czechoslovak Mathematical Journal
We construct a class of special homogeneous Moran sets, called -quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of , we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.
R. Mauldin (1971)
Fundamenta Mathematicae
Panchenko, Dmitriy (2002)
Electronic Communications in Probability [electronic only]
Lee Tuo-Yeong (2005)
Czechoslovak Mathematical Journal
Using generalized absolute continuity, we characterize additive interval functions which are indefinite Henstock-Kurzweil integrals in the Euclidean space.
Wolfgang Sander (1983)
Monatshefte für Mathematik
Józef Myjak, Tomasz Szarek (2003)
Bollettino dell'Unione Matematica Italiana
Let be a compact quasi self-similar set in a complete metric space and let denote the space of all probability measures on , endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in the lower concentration dimension is equal to , while the upper concentration dimension is equal to the Hausdorff dimension of .
Pašić, Mervan, Županović, Vesna (2004)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Witold Seredyński (1989)
Colloquium Mathematicae
Claude Laflamme (1992)
Colloquium Mathematicae
Maria Gabriella Graziano (2000)
Bollettino dell'Unione Matematica Italiana
Nell'ultimo ventennio tutta una serie di lavori è stata rivolta allo studio delle misure su strutture algebriche più generali delle algebre di Boole, come i poset e i reticoli ortomodulari, le effect algebras, le BCK-algebras. La teoria così ottenuta interessa l'analisi funzionale, il calcolo delle probabilità e la topologia, più recentemente la teoria delle decisioni. Si presentano alcuni risultati relativi a misure su strutture algebriche non-standard analizzando, in particolare, gli aspetti topologici...
Heinz J. Skala (1982)
Stochastica
After a short discussion of the first application of measure theoretic tools to economics we show that it is consistent relative to the usual axioms of set theory that there exists no nonatomic probability space of power less than the continuum. This together with other results shows that Aumann's continuum-of-agents methodology provides a sound framework at least for the cooperative theory. There are, however, other problems in economics where, without further assumptions, the continuum may be...
A. B. Kharazishvili (2008)
Acta Universitatis Carolinae. Mathematica et Physica