Displaying 261 – 280 of 901

Showing per page

Ergodic theory for the one-dimensional Jacobi operator

Carmen Núñez, Rafael Obaya (1996)

Studia Mathematica

We determine the number and properties of the invariant measures under the projective flow defined by a family of one-dimensional Jacobi operators. We calculate the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce the existence of the non-tangential limit of Weyl m-functions in the L 1 -topology.

Ergodic transforms associated to general averages

H. Aimar, A. L. Bernardis, F. J. Martín-Reyes (2010)

Studia Mathematica

Jones and Rosenblatt started the study of an ergodic transform which is analogous to the martingale transform. In this paper we present a unified treatment of the ergodic transforms associated to positive groups induced by nonsingular flows and to general means which include the usual averages, Cesàro-α averages and Abel means. We prove the boundedness in L p , 1 < p < ∞, of the maximal ergodic transforms assuming that the semigroup is Cesàro bounded in L p . For p = 1 we find that the maximal ergodic...

Ergodicity for piecewise smooth cocycles over toral rotations

Anzelm Iwanik (1998)

Fundamenta Mathematicae

Let α be an ergodic rotation of the d-torus 𝕋 d = d / d . For any piecewise smooth function f : 𝕋 d with sufficiently regular pieces the unitary operator Vh(x) = exp(2π if(x))h(x + α) acting on L 2 ( 𝕋 d ) is shown to have a continuous non-Dirichlet spectrum if the gradient of f has nonzero integral. In particular, the resulting skew product S f : 𝕋 d + 1 𝕋 d + 1 must be ergodic. If in addition α is sufficiently well approximated by rational vectors and f is represented by a linear function with noninteger coefficients then the spectrum of V...

Currently displaying 261 – 280 of 901