Ergodic Theorems for Noncommutative Dynamical Systems.
Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in are considered. Techniques used here are inspired by [3].
We determine the number and properties of the invariant measures under the projective flow defined by a family of one-dimensional Jacobi operators. We calculate the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce the existence of the non-tangential limit of Weyl m-functions in the -topology.
Jones and Rosenblatt started the study of an ergodic transform which is analogous to the martingale transform. In this paper we present a unified treatment of the ergodic transforms associated to positive groups induced by nonsingular flows and to general means which include the usual averages, Cesàro-α averages and Abel means. We prove the boundedness in , 1 < p < ∞, of the maximal ergodic transforms assuming that the semigroup is Cesàro bounded in . For p = 1 we find that the maximal ergodic...
Let α be an ergodic rotation of the d-torus . For any piecewise smooth function with sufficiently regular pieces the unitary operator Vh(x) = exp(2π if(x))h(x + α) acting on is shown to have a continuous non-Dirichlet spectrum if the gradient of f has nonzero integral. In particular, the resulting skew product must be ergodic. If in addition α is sufficiently well approximated by rational vectors and f is represented by a linear function with noninteger coefficients then the spectrum of V...