Displaying 681 – 700 of 901

Showing per page

Rigidity results for Bernoulli actions and their von Neumann algebras

Stefaan Vaes (2005/2006)

Séminaire Bourbaki

Using very original methods from operator algebras, Sorin Popa has shown that the orbit structure of the Bernoulli action of a property (T) group, completely remembers the group and the action. This information is even essentially contained in the crossed product von Neumann algebra. This is the first von Neumann strong rigidity theorem in the literature. The same methods allow Popa to obtain II 1 factors with prescribed countable fundamental group.

Ruelle operator with nonexpansive IFS

Ka-Sing Lau, Yuan-Ling Ye (2001)

Studia Mathematica

The Ruelle operator and the associated Perron-Frobenius property have been extensively studied in dynamical systems. Recently the theory has been adapted to iterated function systems (IFS) ( X , w j j = 1 m , p j j = 1 m ) , where the w j ’s are contractive self-maps on a compact subset X d and the p j ’s are positive Dini functions on X [FL]. In this paper we consider Ruelle operators defined by weakly contractive IFS and nonexpansive IFS. It is known that in such cases, positive bounded eigenfunctions may not exist in general. Our theorems...

Semisimplicity, joinings and group extensions

A. Del Junco, M. Lemańczyk, M. Mentzen (1995)

Studia Mathematica

We present a theory of self-joinings for semisimple maps and their group extensions which is a unification of the following three cases studied so far: (iii) Gaussian-Kronecker automorphisms: [Th], [Ju-Th]. (ii) MSJ and simple automorphisms: [Ru], [Ve], [Ju-Ru]. (iii) Group extension of discrete spectrum automorphisms: [Le-Me], [Le], [Me].

Sequence entropy pairs and complexity pairs for a measure

Wen Huang, Alejandro Maass, Xiangdong Ye (2004)

Annales de l’institut Fourier

In this paper we explore topological factors in between the Kronecker factor and the maximal equicontinuous factor of a system. For this purpose we introduce the concept of sequence entropy n -tuple for a measure and we show that the set of sequence entropy tuples for a measure is contained in the set of topological sequence entropy tuples [H- Y]. The reciprocal is not true. In addition, following topological ideas in [BHM], we introduce a weak notion and a strong notion of complexity pair for a...

Sets with doubleton sections, good sets and ergodic theory

A. Kłopotowski, M. G. Nadkarni, H. Sarbadhikari, S. M. Srivastava (2002)

Fundamenta Mathematicae

A Borel subset of the unit square whose vertical and horizontal sections are two-point sets admits a natural group action. We exploit this to discuss some questions about Borel subsets of the unit square on which every function is a sum of functions of the coordinates. Connection with probability measures with prescribed marginals and some function algebra questions is discussed.

Shift invariant measures and simple spectrum

A. Kłopotowski, M. Nadkarni (2000)

Colloquium Mathematicae

We consider some descriptive properties of supports of shift invariant measures on under the assumption that the closed linear span (in L 2 ) of the co-ordinate functions on is all of L 2 .

Simple systems are disjoint from Gaussian systems

Andrés del Junco, Mariusz Lemańczyk (1999)

Studia Mathematica

We prove the theorem promised in the title. Gaussians can be distinguished from simple maps by their property of divisibility. Roughly speaking, a system is divisible if it has a rich supply of direct product splittings. Gaussians are divisible and weakly mixing simple maps have no splittings at all so they cannot be isomorphic. The proof that they are disjoint consists of an elaboration of this idea, which involves, among other things, the notion of virtual divisibility, which is, more or less,...

Smooth Extensions of Bernoulli Shifts

Zbigniew S. Kowalski (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

For homographic extensions of the one-sided Bernoulli shift we construct σ-finite invariant and ergodic product measures. We apply the above to the description of invariant product probability measures for smooth extensions of one-sided Bernoulli shifts.

Currently displaying 681 – 700 of 901