An integral representation for decomposable measures of measurable functions.
Lattice-valued possibilistic measures, conceived and developed in more detail by G. De Cooman in 1997 [2], enabled to apply the main ideas on which the real-valued possibilistic measures are founded also to the situations often occurring in the real world around, when the degrees of possibility, ascribed to various events charged by uncertainty, are comparable only quantitatively by the relations like “greater than” or “not smaller than”, including the particular cases when such degrees are not...
In this paper, we propose a new method to generate a continuous belief functions from a multimodal probability distribution function defined over a continuous domain. We generalize Smets' approach in the sense that focal elements of the resulting continuous belief function can be disjoint sets of the extended real space of dimension n. We then derive the continuous belief function from multimodal probability density functions using the least commitment principle. We illustrate the approach on two...
In this paper, we propose a new method to generate a continuous belief functions from a multimodal probability distribution function defined over a continuous domain. We generalize Smets' approach in the sense that focal elements of the resulting continuous belief function can be disjoint sets of the extended real space of dimension n. We then derive the continuous belief function from multimodal probability density functions using the least commitment principle. We illustrate the approach on two...
We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ hull to every negligible/measurable subset of [0,1]? Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....
In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a -ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples.
Distortion of fuzzy measures is discussed. A special attention is paid to the preservation of submodularity and supermodularity, belief and plausibility. Full characterization of distortion functions preserving the mentioned properties of fuzzy measures is given.
In this paper we construct conditional states on semi-simple MV-algebras. We show that these conditional states are not given uniquely. By using them we construct the joint probability distributions and discuss the properties of these distributions. We show that the independence is not symmetric.
A new construction method for aggregation operators based on a composition of aggregation operators is proposed. Several general properties of this construction method are recalled. Further, several special cases are discussed. It is also shown, that this construction generalizes a recently introduced twofold integral, which is exactly a composition of the Choquet and Sugeno integral by means of a min operator.
We obtain for measures on MV-algebras the classical theorem of Dieudonné related to convergent sequences of regular maps.
Gruenhage asked if it was possible to cover the real line by less than continuum many translates of a compact nullset. Under the Continuum Hypothesis the answer is obviously negative. Elekes and Stepr mans gave an affirmative answer by showing that if is the well known compact nullset considered first by Erdős and Kakutani then ℝ can be covered by cof() many translates of . As this set has no analogue in more general groups, it was asked by Elekes and Stepr mans whether such a result holds for...