On the existence of meromorphic solutions of differential equations having arbitarily rapid growth.
We shall prove, using the result from our previous paper [Ann. Polon. Math. 88 (2006)], that for a quadratic polynomial mapping Q of ℝ² only the geometric shape of the critical set of Q determines whether the complexification of Q can be extended to an endomorphism of ℂℙ². At the end of the paper we describe some interesting classes of quadratic polynomial mappings of ℝ² and give some examples.
We investigate extreme points of some classes of analytic functions defined by subordination and classes of functions with varying argument of coefficients. By using extreme point theory we obtain coefficient estimates and distortion theorems in these classes of functions. Some integral mean inequalities are also pointed out.
A closed Riemann surface which is a 3-sheeted regular covering of the Riemann sphere is called cyclic trigonal, and such a covering is called a cyclic trigonal morphism. Accola showed that if the genus is greater or equal than 5 the trigonal morphism is unique. Costa-Izquierdo-Ying found a family of cyclic trigonal Riemann surfaces of genus 4 with two trigonal morphisms. In this work we show that this family is the Riemann sphere without three points. We also prove that the Hurwitz space of pairs...
A planar polygonal billiard is said to have the finite blocking property if for every pair of points in there exists a finite number of “blocking” points such that every billiard trajectory from to meets one of the ’s. Generalizing our construction of a counter-example to a theorem of Hiemer and Snurnikov, we show that the only regular polygons that have the finite blocking property are the square, the equilateral triangle and the hexagon. Then we extend this result to translation surfaces....
By using an extension of the spherical derivative introduced by Lappan, we obtain some results on normal functions and normal families, which extend Lappan's five-point theorems and Marty's criterion, and improve some previous results due to Li and Xie, and the author. Also, another proof of Lappan's theorem is given.
This paper studies the uniqueness of meromorphic functions that share two values, where , , . The results significantly rectify, improve and generalize the results due to Cao and Zhang (2012).