On a result by Clunie and Sheil-Small
In 1984 J. Clunie and T. Sheil-Small proved ([2, Corollary 5.8]) that for any complex-valued and sense-preserving injective harmonic mapping F in the unit disk D, if F(D) is a convex domain, then the inequality |G(z2)− G(z1)| < |H(z2) − H(z1)| holds for all distinct points z1, z2∈ D. Here H and G are holomorphic mappings in D determined by F = H + Ḡ, up to a constant function. We extend this inequality by replacing the unit disk by an arbitrary nonempty domain Ω in ℂ and improve it provided F...