Displaying 41 – 60 of 84

Showing per page

Partial sums of Taylor series on a circle

E. S. Katsoprinakis, V. N. Nestoridis (1989)

Annales de l'institut Fourier

We characterize the power series n = 0 c n z n with the geometric property that, for sufficiently many points z , | z | = 1 , a circle C ( z ) contains infinitely many partial sums. We show that n = 0 c n z n is a rational function of special type; more precisely, there are t and n 0 , such that, the sequence c n e int , n n 0 , is periodic. This result answers in the affirmative a question of J.-P. Kahane and furnishes stronger versions of the main results of [Katsoprinakis, Arkiv for Matematik]. We are led to consider special families of circles C ( z ) with...

Prolongement analytique et systèmes dynamiques discrets.

Augustin Fruchard (1992)

Collectanea Mathematica

We present a new method of analytic continuation of series out of their disk of convergence. We then exhibit a connection with the phenomenon of bifurcation delay in a planar discrete dynamical system; the limit of the method is then related to a stop phenomenon.

Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables

Patrick Sargos (1984)

Annales de l'institut Fourier

Soient P ( x _ ) = P ( x 1 , ... , x n ) et Q ( x _ ) = Q ( x 1 , ... , x n ) deux polynômes à coefficients positifs vérifiant : lim | x _ | + x 1 , ... , x n 1 P ( x _ ) Q ( x _ ) = + . Soient η _ = ( η 1 , ... , η n ) N n et R = P / Q . On étudie la série de Dirichlet Z ( R , η _ ; s ) = η 1 , ... , η n = 1 η _ η _ R ( η _ ) - s : abscisse de convergence absolue, existence et nature du prolongement méromorphe, ordre de grandeur dans les bandes verticales. On donne un procédé de construction du prolongement méromorphe de la fonction s Z ( R , η _ ; s ) qui ne dépend que de η _ et de certains monômes de P et Q : les monômes extrémaux.

Removable singularities for weighted Bergman spaces

Anders Björn (2006)

Czechoslovak Mathematical Journal

We develop a theory of removable singularities for the weighted Bergman space 𝒜 μ p ( Ω ) = { f analytic in Ω Ω | f | p d μ < } , where μ is a Radon measure on . The set A is weakly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) Hol ( Ω ) , and strongly removable for 𝒜 μ p ( Ω A ) if 𝒜 μ p ( Ω A ) = 𝒜 μ p ( Ω ) . The general theory developed is in many ways similar to the theory of removable singularities for Hardy H p spaces, B M O and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable....

Sur une inégalité fondamentale et les singularités d’une fonction analytique définie par un élément L C -dirichlétien

Maurice Blambert, R. Parvatham (1983)

Annales de l'institut Fourier

Utilisant une fonction entière g B [ 1 , T ] et les propriétés relatives à son diagramme indicateur et à son diagramme conjugué, on établit une inégalité fondamentale liée au terme général d’un élément L C -dirichlétien Σ P n ( s ) exp ( - λ n / s ) où les λ n sont complexes et où les P n ( s ) sont des polynômes tayloriens. Ensuite on établit des propriétés de convergence et on utilise l’inégalité fondamentale pour obtenir certaines propriétés liées au prolongement analytique de la fonction définie par l’élément L C -dirichlétien dans un ouvert connexe...

Currently displaying 41 – 60 of 84