Displaying 101 – 120 of 560

Showing per page

Description of simple exceptional sets in the unit ball

Piotr Kot (2004)

Czechoslovak Mathematical Journal

For z B n , the boundary of the unit ball in n , let Λ ( z ) = { λ | λ | 1 } . If f 𝕆 ( B n ) then we call E ( f ) = { z B n Λ ( z ) | f ( z ) | 2 d Λ ( z ) = } the exceptional set for f . In this note we give a tool for describing such sets. Moreover we prove that if E is a G δ and F σ subset of the projective ( n - 1 ) -dimensional space n - 1 = ( n ) then there exists a holomorphic function f in the unit ball B n so that E ( f ) = E .

Determination of the pluripolar hull of graphs of certain holomorphic functions

Armen Edigarian, Jan Wiegerinck (2004)

Annales de l’institut Fourier

Let A be a closed polar subset of a domain D in . We give a complete description of the pluripolar hull Γ D × * of the graph Γ of a holomorphic function defined on D A . To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.

Deux remarques sur les séries et les polynômes de Dirichlet

Christian Deutsch (1974)

Annales de l'institut Fourier

Cette note contient deux résultats :- d’une part, une majoration de l’abscisse d’absolue convergence du développement en série de Dirichlet de l’inverse de la somme d’une série de Dirichlet donnée.- d’autre part, le fait que tout polynôme de Dirichlet non constant 1 + 2 k N a k λ k - s les a k sont des entiers relatifs et les λ k sont des nombres réels > 1 s’annule dans tout demi-plan Réel s > - ϵ ϵ > 0 .L’un et l’autre de ces résultats sont conséquences d’une proposition que l’on démontre en utilisant des théorèmes classiques de la théorie des fonctions p.p. analytiques....

Division et composition dans l'anneau des séries de Dirichlet analytiques

Frédéric Bayart, Augustin Mouze (2003)

Annales de l'Institut Fourier

Ce travail est une étude analytique locale de l’anneau des séries de Dirichlet convergentes. Dans un premier temps, on établit des propriétés arithmétiques de cet anneau ; on prouve en particulier sa factorialité, que l’on déduit de théorèmes de division du type Weierstrass. Ensuite, on s’intéresse à des problèmes de composition. Soient f ( s ) et ϕ ( s ) des séries de Dirichlet convergentes. On sait que f ( c 0 s + ϕ ( s ) ) , avec c 0 * , est encore une série de Dirichlet convergente. On étudie la réciproque : sous les hypothèses que...

Currently displaying 101 – 120 of 560