Displaying 141 – 160 of 887

Showing per page

Counting walks in a quadrant: a unified approach via boundary value problems

Kilian Raschel (2012)

Journal of the European Mathematical Society

The aim of this article is to introduce a unified method to obtain explicit integral representations of the trivariate generating function counting the walks with small steps which are confined to a quarter plane. For many models, this yields for the first time an explicit expression of the counting generating function. Moreover, the nature of the integrand of the integral formulations is shown to be directly dependent on the finiteness of a naturally attached group of birational transformations...

Cross ratios, Anosov representations and the energy functional on Teichmüller space

François Labourie (2008)

Annales scientifiques de l'École Normale Supérieure

We study two classes of linear representations of a surface group: Hitchin and maximal symplectic representations. We relate them to cross ratios and thus deduce that they are displacing which means that their translation lengths are roughly controlled by the translations lengths on the Cayley graph. As a consequence, we show that the mapping class group acts properly on the space of representations and that the energy functional associated to such a representation is proper. This implies the existence...

Cross ratios, surface groups, P S L ( n , 𝐑 ) and diffeomorphisms of the circle

François Labourie (2007)

Publications Mathématiques de l'IHÉS

This article relates representations of surface groups to cross ratios. We first identify a connected component of the space of representations into PSL(n,ℝ) – known as the n-Hitchin component– to a subset of the set of cross ratios on the boundary at infinity of the group. Similarly, we study some representations into C 1 , h ( 𝕋 ) Diff h ( 𝕋 ) associated to cross ratios and exhibit a “character variety” of these representations. We show that this character variety contains alln-Hitchin components as well as the set of...

Déformation localisée de surfaces de Riemann.

Peter Haïssinsky (2005)

Publicacions Matemàtiques

Let Y be a Riemann surface with compact boundary embedded into a hyperbolic Riemann surface of finite type X. It is proved that the space of deformations D of Y into X is an open subset of the Teichmüller space T(X) of X. Furthermore, D has compact closure if and only if Y is simply connected or isomorphic to a punctured disk, and D= T(X) if and only if the components of X Y are all disks or punctured disks.

Déformations de flots d'Anosov et de groupes fuchsiens

Étienne Ghys (1992)

Annales de l'institut Fourier

Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe C . Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.

Currently displaying 141 – 160 of 887