Analytic classes on subframe and expanded disk and the s differential operator in polydisk.
give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞
Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping and that of , we study various norms for , where is the Toeplitz operator with symbol . In Theorem , given polynomials and we find a symbol such that . We extend some of our results to the polydisc.
The survey collects many recent advances on area Nevanlinna type classes and related spaces of analytic functions in the unit disk concerning zero sets and factorization representations of these classes and discusses approaches, used in proofs of these results.
We extend and simplify results of [Din 2010] where the asymptotic behavior of the holomorphic sectional curvature of the Bergman metric in annuli is studied. Similarly to [Din 2010] the description enables us to construct an infinitely connected planar domain (in our paper it is a Zalcman type domain) for which the supremum of the holomorphic sectional curvature is two, whereas its infimum is equal to -∞ .
Estudiamos algunas cuestiones estructurales acerca del espacio localmente convexo HV∞, que está formado por funciones analíticas en el disco unidad abierto. Construimos una descomposición atómica de este espacio, usando un retículo de puntos del disco unidad que es más denso que el usual. También demostramos que HV∞ no es nuclear.
Résumé. Soient D un ouvert de ℂ et E un compact de D. Moyennant une hypothèse assez faible sur D et ℂ̅ E on montre que si α ∈ ]0,1[ vérifie , étant l’ouvert de niveau z ∈ D : ω(E,D,z) < α, alors toute base commune de O(E) et O(D) est une base de .
Some basic theorems and formulae (equations and inequalities) of several areas of mathematics that hold in Bernstein spaces are no longer valid in larger spaces. However, when a function f is in some sense close to a Bernstein space, then the corresponding relation holds with a remainder or error term. This paper presents a new, unified approach to these errors in terms of the distance of f from . The difficult situation of derivative-free error estimates is also covered.
Associated with some properties of weighted composition operators on the spaces of bounded harmonic and analytic functions on the open unit disk , we obtain conditions in terms of behavior of weight functions and analytic self-maps on the interior and on the boundary respectively. We give direct proofs of the equivalence of these interior and boundary conditions. Furthermore we give another proof of the estimate for the essential norm of the difference of weighted composition operators.
Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by . Necessary and sufficient conditions on zₙ are given such that maps the Hardy space boundedly into the sequence space . A corresponding result for Bergman spaces is also stated.
We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip’s results from the unit disk of to the unit ball of . We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten classes membership of Toeplitz operators for .
We characterize Carleson measures for the analytic Besov spaces. The problem is first reduced to a discrete question involving measures on trees which is then solved. Applications are given to multipliers for the Besov spaces and to the determination of interpolating sequences. The discrete theorem is also applied to analysis of function space on trees.