Displaying 21 – 40 of 272

Showing per page

Analytic rings

Eduardo Dubuc, Gabriel Taubin (1983)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Area differences under analytic maps and operators

Mehmet Çelik, Luke Duane-Tessier, Ashley Marcial Rodriguez, Daniel Rodriguez, Aden Shaw (2024)

Czechoslovak Mathematical Journal

Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping h and that of z h , we study various L 2 norms for T ϕ ( h ) , where T ϕ is the Toeplitz operator with symbol ϕ . In Theorem , given polynomials p and q we find a symbol ϕ such that T ϕ ( p ) = q . We extend some of our results to the polydisc.

Asymptotic behavior of the sectional curvature of the Bergman metric for annuli

Włodzimierz Zwonek (2010)

Annales Polonici Mathematici

We extend and simplify results of [Din 2010] where the asymptotic behavior of the holomorphic sectional curvature of the Bergman metric in annuli is studied. Similarly to [Din 2010] the description enables us to construct an infinitely connected planar domain (in our paper it is a Zalcman type domain) for which the supremum of the holomorphic sectional curvature is two, whereas its infimum is equal to -∞ .

Atomic decomposition of a weighted inductive limit.

Jari Taskinen (2003)

RACSAM

Estudiamos algunas cuestiones estructurales acerca del espacio localmente convexo HV∞, que está formado por funciones analíticas en el disco unidad abierto. Construimos una descomposición atómica de este espacio, usando un retículo de puntos del disco unidad que es más denso que el usual. También demostramos que HV∞ no es nuclear.

Bases communes holomorphes: nouvelle extension du théorème de Whittaker

Nguyen Thanh Van, Patrice Lassere (1993)

Annales Polonici Mathematici

Résumé. Soient D un ouvert de ℂ et E un compact de D. Moyennant une hypothèse assez faible sur D et ℂ̅ E on montre que si α ∈ ]0,1[ vérifie D α D E , D α étant l’ouvert de niveau z ∈ D : ω(E,D,z) < α, alors toute base commune de O(E) et O(D) est une base de O ( D α ) .

Basic relations valid for the Bernstein spaces B ² σ and their extensions to larger function spaces via a unified distance concept

P. L. Butzer, R. L. Stens, G. Schmeisser (2014)

Banach Center Publications

Some basic theorems and formulae (equations and inequalities) of several areas of mathematics that hold in Bernstein spaces B σ p are no longer valid in larger spaces. However, when a function f is in some sense close to a Bernstein space, then the corresponding relation holds with a remainder or error term. This paper presents a new, unified approach to these errors in terms of the distance of f from B σ p . The difficult situation of derivative-free error estimates is also covered.

Boundary vs. interior conditions associated with weighted composition operators

Kei Izuchi, Yuko Izuchi, Shûichi Ohno (2014)

Open Mathematics

Associated with some properties of weighted composition operators on the spaces of bounded harmonic and analytic functions on the open unit disk 𝔻 , we obtain conditions in terms of behavior of weight functions and analytic self-maps on the interior 𝔻 and on the boundary 𝔻 respectively. We give direct proofs of the equivalence of these interior and boundary conditions. Furthermore we give another proof of the estimate for the essential norm of the difference of weighted composition operators.

Bounded evaluation operators from H p into q

Martin Smith (2007)

Studia Mathematica

Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by T z , p ( f ) = ( 1 - | z | ² ) 1 / p f ( z ) . Necessary and sufficient conditions on zₙ are given such that T z , p maps the Hardy space H p boundedly into the sequence space q . A corresponding result for Bergman spaces is also stated.

Carleson measures and Toeplitz operators on small Bergman spaces on the ball

Van An Le (2021)

Czechoslovak Mathematical Journal

We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip’s results from the unit disk of to the unit ball of n . We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten p classes membership of Toeplitz operators for 1 < p < .

Carleson measures for analytic Besov spaces.

Nicola Arcozzi, Richard Rochberg, Eric Sawyer (2002)

Revista Matemática Iberoamericana

We characterize Carleson measures for the analytic Besov spaces. The problem is first reduced to a discrete question involving measures on trees which is then solved. Applications are given to multipliers for the Besov spaces and to the determination of interpolating sequences. The discrete theorem is also applied to analysis of function space on trees.

Currently displaying 21 – 40 of 272