Inverse mean value property of harmonic functions.
We extend the Rado-Choquet-Kneser theorem to mappings with Lipschitz boundary data and essentially positive Jacobian at the boundary without restriction on the convexity of image domain. The proof is based on a recent extension of the Rado-Choquet-Kneser theorem by Alessandrini and Nesi and it uses an approximation scheme. Some applications to families of quasiconformal harmonic mappings between Jordan domains are given.