Weak periodic solutions of some quasilinear parabolic equations with data measures.
We investigate the class of functions associated with the complex Hessian equation .
We present a number of Wiener’s type necessary and sufficient conditions (in terms of divergence of integrals or series involving a condenser capacity) for a compact set E ⊂ ℂ to be regular with respect to the Dirichlet problem. The same capacity is used to give a simple proof of the following known theorem [2, 6]: If E is a compact subset of ℂ such that for 0 < t ≤ 1 and a ∈ E, where d(F) is the logarithmic capacity of F, then the Green function of ℂ E with pole at infinity is Hölder continuous....