-approximation of generalized biaxially symmetric potentials over Carathéodory domains
Les problèmes de Dirichlet sur la frontière de Martin, sur la frontière de Choquet d’un simplexe métrisable compact, et sur la frontière de Silov d’un simplexe de Bauer métrisable sont tous susceptibles d’une seule méthode de résolution qui utilise un espace de fonctions dites quasi-continues. Cela contient aussi le théorème des limites fines de Fatou-Naïm qui exprime une quasi-continuité jusqu’à la frontière.
On introduit les espaces fonctionnels dans lesquels l’opérateur potentiel satisfait au principe semi-complet du maximum si et seulement si la contraction module opère. Un tel espace fonctionnel sur la frontière de Martin d’un espace harmonique symétrique de Brelot est envisagé à l’aide du noyau de Naïm. Il est isomorphe à l’espace de Dirichlet des fonctions harmoniques. L’opérateur potentiel de cet espace donne la solution du problème de Neumann. On introduit l’espace de Dirichlet des fonctions...
A 2p-times continuously differentiable complex-valued function f = u + iv in a domain D ⊆ ℂ is p-harmonic if f satisfies the p-harmonic equation , where p (≥ 1) is a positive integer and Δ represents the complex Laplacian operator. If Ω ⊂ ℂⁿ is a domain, then a function is said to be p-harmonic in Ω if each component function (i∈ 1,...,m) of is p-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch’s theorem for a class of p-harmonic mappings f from...
To a domain with conical points Ω, we associate a natural C*-algebra that is motivated by the study of boundary value problems on Ω, especially using the method of layer potentials. In two dimensions, we allow Ω to be a domain with ramified cracks. We construct an explicit groupoid associated to ∂Ω and use the theory of pseudodifferential operators on groupoids and its representations to obtain our layer potentials C*-algebra. We study its structure, compute the associated K-groups, and prove Fredholm...
Soit l’opérateur elliptique dégénéré , du type considéré par J.-M. Bony dans ses travaux récents (par ex. Conférences du C.I.M.E., Stresa, juillet 1969), tel que le faisceau associé de fonctions harmoniques vérifie les axiomes de Brelot : on montre que les fonctions surharmoniques associées sont localement intégrables et caractérisées par , et que les potentiels à support ponctuel donné sont proportionnels.