Über das Dirichletsche Problem bei der Bipotentialgleichung.
Une construction de fonctions plurisousharmoniques nous permet, en utilisant les techniques de Hörmander, d’obtenir un résultat de -cohomologie à croissance. Les méthodes de B. Malgrange nous fournissent alors deux applications aux systèmes différentiels à coefficients constants.
We study unbounded harmonic functions for a second order differential operator on a homogeneous manifold of negative curvature which is a semidirect product of a nilpotent Lie group N and A = ℝ⁺. We prove that if F is harmonic and satisfies some growth condition then F has an asymptotic expansion as a → 0 with coefficients from 𝓓'(N). Then we single out a set of at most two of these coefficients which determine F. Then using asymptotic expansions we are able to prove some theorems...
Si est une boule ouverte contenue dans le domaine euclidien , tout filtre sur , tendant non tangentiellement vers un point de , converge vers un point minimal dans le compactifié de Martin de . On donne une application, et une variante dans le cas plan, et on termine par un contre-exemple apportant une solution négative à un problème de R.S. Martin. L’idée générale de l’article est d’établir des variantes des inégalités de Harnack pour déterminer la frontière de Martin du domaine.
Dati due elementi e in un'algebra uniforme , sia . Nella presente Nota si danno, fra l’altro, due nuove dimostrazioni elementari del fatto che la funzione è subarmonica su e che l’applicazione è analitica nel senso di Oka.
We give a characterization of functions that are uniformly approximable on a compact subset of by biharmonic functions in neighborhoods of .
Let , be elliptic operators with Hölder continuous coefficients on a bounded domain of class . There is a constant depending only on the Hölder norms of the coefficients of and its constant of ellipticity such thatwhere (resp. ) are the Green functions of (resp. ) on .