Valeurs au bord pour les solutions de l’opérateur , et caractérisation des zéros des fonctions de la classe de Nevanlinna
Page 1
Henri Skoda (1976)
Bulletin de la Société Mathématique de France
Alexander I. Kheyfits (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros is extended to subharmonic functions in , having the Riesz masses on a ray.
Petteri Harjulehto, Peter Hästö, Mika Koskenoja, Susanna Varonen (2005)
Banach Center Publications
In a recent article the authors showed that it is possible to define a Sobolev capacity in variable exponent Sobolev space. However, this set function was shown to be a Choquet capacity only under certain assumptions on the variable exponent. In this article we relax these assumptions.
Umberto Mosco (1997)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
J. Pipher, D. Mitrea, M. Mitrea (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Wolfgang Arendt (2016)
Concrete Operators
Holomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions...
Michael D. O'Neill (2001)
Colloquium Mathematicae
Some results of Bourgain on the radial variation of harmonic functions in the disk are extended to the setting of harmonic functions in upper half-spaces.
Thomas Bloom (2011)
Annales de la faculté des sciences de Toulouse Mathématiques
We give a new proof, relying on polynomial inequalities and some aspects of potential theory, of large deviation results for ensembles of random hermitian matrices.
Neil Watson (2000)
Colloquium Mathematicae
Several authors have found the characteristic mean value formula for temperatures over heat spheres. Those who derived a corresponding formula over heat balls have all chosen different mean values. In this paper we discuss an infinity of possible means over heat balls, and show that, in the wider context of subtemperatures, some are more desirable than others.
Gustave Choquet (1989)
Pokroky matematiky, fyziky a astronomie
Josef Král, Jaroslav Lukeš, Ivan Netuka, Jiří Veselý (1988)
Pokroky matematiky, fyziky a astronomie
Page 1