On univalent solutions of the biharmonic equation.
Motivated by a long-standing conjecture of Pólya and Szegö about the Newtonian capacity of convex bodies, we discuss the role of concavity inequalities in shape optimization, and we provide several counterexamples to the Blaschke-concavity of variational functionals, including capacity. We then introduce a new algebraic structure on convex bodies, which allows to obtain global concavity and indecomposability results, and we discuss their application...
Motivated by a long-standing conjecture of Pólya and Szegö about the Newtonian capacity of convex bodies, we discuss the role of concavity inequalities in shape optimization, and we provide several counterexamples to the Blaschke-concavity of variational functionals, including capacity. We then introduce a new algebraic structure on convex bodies, which allows to obtain global concavity and indecomposability results, and we discuss their application to isoperimetric-like inequalities. As a byproduct...
Motivated by a long-standing conjecture of Pólya and Szegö about the Newtonian capacity of convex bodies, we discuss the role of concavity inequalities in shape optimization, and we provide several counterexamples to the Blaschke-concavity of variational functionals, including capacity. We then introduce a new algebraic structure on convex bodies, which allows to obtain global concavity and indecomposability results, and we discuss their application...
Let be a bounded simply connected domain in the complex plane, . Let be a neighborhood of , let be fixed, and let be a positive weak solution to the Laplace equation in Assume that has zero boundary values on in the Sobolev sense and extend to by putting on Then there exists a positive finite Borel measure on with support contained in and such thatwhenever If and if is the Green function for with pole at then the measure coincides with harmonic measure...
When and the -harmonic measure on the boundary of the half plane is not additive on null sets. In fact, there are finitely many sets , ,..., in , of -harmonic measure zero, such that .
In this paper we survey some recent results in connection with the so called Painlevé's problem and the semiadditivity of analytic capacity γ. In particular, we give the detailed proof of the semiadditivity of the capacity γ+, and we show almost completely all the arguments for the proof of the comparability between γ and γ+.
We prove that generalized Cantor sets of class α, α ≠ 2 have the extension property iff α < 2. Thus belonging of a compact set K to some finite class α cannot be a characterization for the existence of an extension operator. The result has some interconnection with potential theory.
A certain linear growth of the pluricomplex Green function of a bounded convex domain of at a given boundary point is related to the existence of a certain plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.