Equality cases in the symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels.
Dans cet article on étudie les fonctions surharmoniques dans un espace muni de la théorie axiomatique des fonctions harmoniques avec les axiomes 1, 2, 3 de M. Brelot, en supposant que les constantes sont harmoniques dans et qu’il n’existe pas de potentiel dans . Ainsi, dans la théorie axiomatique, on se propose de chercher à étendre les particularités du cas plan et quelques résultats sur les surfaces de Riemann du type parabolique. On démontre premièrement, en utilisant une notion de flux...
Let be an open set with a compact boundary and let be a finite measure on . Consider the space of all -integrable functions on and, for each...
Let () be a compact set; assume that each ball centered on the boundary of meets in a set of positive Lebesgue measure. Let be the class of all continuously differentiable real-valued functions with compact support in and denote by the area of the unit sphere in . With each we associate the function of the variable (which is continuous in and harmonic in ). depends only on the restriction of to the boundary of . This gives rise to a linear operator acting from...
We obtain an estimate for the Poisson kernel for the class of second order left-invariant differential operators on higher rank NA groups.
For rank one solvable Lie groups of the type NA estimates for the Poisson kernels and their derivatives are obtained. The results give estimates on the Poisson kernel and its derivatives in a natural parametrization of the Poisson boundary (minus one point) of a general homogeneous, simply connected manifold of negative curvature.
We prove global pointwise estimates for the Green function of a parabolic operator with potential in the parabolic Kato class on a cylindrical domain Ω. We apply these estimates to obtain a new and shorter proof of the Harnack inequality [16], and to study the boundary behavior of nonnegative solutions.
A new and elegant procedure is proposed for the solution of mixed potential problems in a half-space with a circular line of division of boundary conditions. The approach is based on a new type of integral operators with special properties. Two general external problems are solved; i) An arbitrary potential is specified at the boundary outside a circle, and its normal derivative is zero inside; ii) An arbitrary normal derivative is given outside the circle, and be potential is zero inside. Several...