Displaying 181 – 200 of 700

Showing per page

Espaces harmoniques sans potentiel positif

Victor Anandam (1972)

Annales de l'institut Fourier

Dans cet article on étudie les fonctions surharmoniques dans un espace Ω muni de la théorie axiomatique des fonctions harmoniques avec les axiomes 1, 2, 3 de M. Brelot, en supposant que les constantes sont harmoniques dans Ω et qu’il n’existe pas de potentiel > 0 dans Ω . Ainsi, dans la théorie axiomatique, on se propose de chercher à étendre les particularités du cas plan et quelques résultats sur les surfaces de Riemann du type parabolique. On démontre premièrement, en utilisant une notion de flux...

Essential norms of the Neumann operator of the arithmetical mean

Josef Král, Dagmar Medková (2001)

Mathematica Bohemica

Let K m ( m 2 ) be a compact set; assume that each ball centered on the boundary B of K meets K in a set of positive Lebesgue measure. Let C 0 ( 1 ) be the class of all continuously differentiable real-valued functions with compact support in m and denote by σ m the area of the unit sphere in m . With each ϕ C 0 ( 1 ) we associate the function W K ϕ ( z ) = 1 σ m m K g r a d ϕ ( x ) · z - x | z - x | m x of the variable z K (which is continuous in K and harmonic in K B ). W K ϕ depends only on the restriction ϕ | B of ϕ to the boundary B of K . This gives rise to a linear operator W K acting from...

Estimates for the Poisson kernels and their derivatives on rank one NA groups

Ewa Damek, Andrzej Hulanicki, Jacek Zienkiewicz (1997)

Studia Mathematica

For rank one solvable Lie groups of the type NA estimates for the Poisson kernels and their derivatives are obtained. The results give estimates on the Poisson kernel and its derivatives in a natural parametrization of the Poisson boundary (minus one point) of a general homogeneous, simply connected manifold of negative curvature.

Exact solutions to some external mixed problems in potential theory

Valery I. Fabrikant (1986)

Aplikace matematiky

A new and elegant procedure is proposed for the solution of mixed potential problems in a half-space with a circular line of division of boundary conditions. The approach is based on a new type of integral operators with special properties. Two general external problems are solved; i) An arbitrary potential is specified at the boundary outside a circle, and its normal derivative is zero inside; ii) An arbitrary normal derivative is given outside the circle, and be potential is zero inside. Several...

Currently displaying 181 – 200 of 700