On the capacity of a plane condenser and conformal mapping.
We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.
We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.
To a plurisubharmonic function on with logarithmic growth at infinity, we may associate the Robin functiondefined on , the hyperplane at infinity. We study the classes , and (respectively) of plurisubharmonic functions which have the form and (respectively) for which the function is not identically . We obtain an integral formula which connects the Monge-Ampère measure on the space with the Robin function on . As an application we obtain a criterion on the convergence of the Monge-Ampère...
For μ a positive measure, we estimate the pluricomplex potential of μ, , where g(x,y) is the pluricomplex Green function (relative to Ω) with pole at y.
Let E be a compact set in the complex plane, be the Green function of the unbounded component of with pole at infinity and where the supremum is taken over all polynomials of degree at most n, and . The paper deals with recent results concerning a connection between the smoothness of (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence . Some additional conditions are given for special classes of sets.
Using rather elementary and direct methods, we first recover and add on some results of Aikawa-Hirata-Lundh about the Martin boundary of a John domain. In particular we answer a question raised by these authors. Some applications are given and the case of more general second order elliptic operators is also investigated. In the last parts of the paper two potential theoretic results are shown in the framework of uniform domains or the framework of hyperbolic manifolds.