Einige Bemerkungen über den Satz von Keldych.
Page 1 Next
Horst Schirmeier, Ursula Schirmeier (1978)
Mathematische Annalen
Gabriel Mokobodzki (1969/1970)
Séminaire Brelot-Choquet-Deny. Théorie du potentiel
Eric Bedford (1985)
Annales Polonici Mathematici
Matthew H. Baker, Robert Rumely (2006)
Annales de l’institut Fourier
Given a rational function on of degree at least 2 with coefficients in a number field , we show that for each place of , there is a unique probability measure on the Berkovich space such that if is a sequence of points in whose -canonical heights tend to zero, then the ’s and their -conjugates are equidistributed with respect to .The proof uses a polynomial lift of to construct a two-variable Arakelov-Green’s function for each . The measure is obtained by taking the...
Bieske, Thomas (2006)
Annales Academiae Scientiarum Fennicae. Mathematica
Sara Brofferio, Wolfgang Woess (2006)
Annales de l'I.H.P. Probabilités et statistiques
E.H. Youssfi, Kyong T. Hahn (1991)
Manuscripta mathematica
Philippe Paclet (1977/1978)
Séminaire Paul Krée
Jean Guillerme (1970/1971)
Séminaire Brelot-Choquet-Deny. Théorie du potentiel
Maz'ya, V.G., Preobrazenskij, S.P. (1984)
International Journal of Mathematics and Mathematical Sciences
Krzysztof Bogdan, Paweł Sztonyk (2007)
Studia Mathematica
We characterize those homogeneous translation invariant symmetric non-local operators with positive maximum principle whose harmonic functions satisfy Harnack's inequality. We also estimate the corresponding semigroup and the potential kernel.
M. Glasner, R. Katz, M. Nakai (1971)
Mathematische Zeitschrift
Niels Jacob (1993)
Colloquium Mathematicae
In [23] M. Pierre introduced parabolic Dirichlet spaces. Such spaces are obtained by considering certain families of Dirichlet forms. He developed a rather far-reaching and general potential theory for these spaces. In particular, he introduced associated capacities and investigated the notion of related quasi-continuous functions. However, the only examples given by M. Pierre in [23] (see also [22]) are Dirichlet forms arising from strongly parabolic differential operators of second order. To...
David Singman (1983)
Mathematische Annalen
Oettli, Werner, Yamasaki, Maretsugu (1996)
Journal of Convex Analysis
Philippe Bougerol, Laure Elie (1995)
Annales de l'I.H.P. Probabilités et statistiques
Nakai, Mitsuru (2000)
Annales Academiae Scientiarum Fennicae. Mathematica
Christian Mercat (2004)
Bulletin de la Société Mathématique de France
We show that discrete exponentials form a basis of discrete holomorphic functions on a finite critical map. On a combinatorially convex set, the discrete polynomials form a basis as well.
Urban Cegrell, Johan Thorbiörnson (1996)
Annales Polonici Mathematici
We study different notions of extremal plurisubharmonic functions.
M. Klimek (1985)
Bulletin de la Société Mathématique de France
Page 1 Next