Structure of the kernel of higher spin Dirac operators
Polynomials on with values in an irreducible -module form a natural representation space for the group . These representations are completely reducible. In the paper, we give a complete description of their decompositions into irreducible components for polynomials with values in a certain range of irreducible modules. The results are used to describe the structure of kernels of conformally invariant elliptic first order systems acting on maps on with values in these modules.