Algébricité de germes analytiques.
We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function belongs to an ideal of the ring of germs of analytic functions at ; more precisely, the ideal membership is obtained if a function associated with and is locally square integrable. If can be generated by elements,it follows in particular that , where denotes the integral closure of an ideal .
In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of .
Nous donnons une méthode pour calculer le nombre de cycles évanouissants d’une hypersurface complexe n’ayant pas nécessairement des singularités isolées.
Nous démontrons que la donnée de la forme de Seifert entière et de la fonction zêta de Denef-Loeser d’un germe de courbe plane à singularité isolée ne déterminent pas le type topologique de ce germe. De plus, la fonction zêta de Denef-Loeser d’un tel germe ne détermine pas la forme de Seifert entière associée.
Nous montrons comment un cup-produit non trivial entre deux blocs de Jordan pour une même valeur propre de la monodromie agissant sur la cohomologie de la fibre de Milnor d’un germe de fonction holomorphe provoque des pôles d’ordres élevés pour le prolongement méromorphe de . Pour la valeur propre 1 ceci donne en particulier le phénomène de “contribution sur-effective”.