Loading [MathJax]/extensions/MathZoom.js
The Łojasiewicz exponent of the gradient of a convergent power series h(X,Y) with complex coefficients is the greatest lower bound of the set of λ > 0 such that the inequality holds near for a certain c > 0. In the paper, we give an estimate of the Łojasiewicz exponent of grad h using information from the Newton diagram of h. We obtain the exact value of the exponent for non-degenerate series.
Nous étudions les espaces analytiques rigides de dimension 1, réguliers, de genre fini sur un corps valué complet . Nous montrons qu’un tel espace admet une réduction préstable. Si est maximalement complet, se plonge dans une courbe algébrique (analytifiée). On donne aussi une caractérisation des espaces analytiques qui sont le complémentaire d’une partie compacte dans une courbe algébrique.
Let (U) denote the algebra of holomorphic functions on an open subset U ⊂ ℂⁿ and Z ⊂ (U) its finite-dimensional vector subspace. By the theory of least spaces of de Boor and Ron, there exists a projection from the local ring onto the space of germs of elements of Z at b. At a general point b ∈ U its kernel is an ideal and induces the structure of an Artinian algebra on . In particular, this holds at points where the kth jets of elements of Z form a vector bundle for each k ∈ ℕ. For an embedded...
Si dimostra un risultato di prolungamento per applicazioni meromorfe a valori in uno spazio -completo che generalizza direttamente il risultato classico di Hartogs e migliora risultati di K. Stein.
The aim of this paper is to study the Łojasiewicz exponent of c-holomorphic mappings. After introducing an order of flatness for c-holomorphic mappings we give an estimate of the Łojasiewicz exponent in the case of isolated zero, which is a generalization of the one given by Płoski and earlier by Chądzyński for two variables.
Currently displaying 41 –
60 of
62