Displaying 121 – 140 of 347

Showing per page

Factorization of uniformly holomorphic functions

Luiza A. Moraes, Otilia W. Paques, M. Carmelina F. Zaine (1995)

Annales Polonici Mathematici

Let E be a complex Hausdorff locally convex space such that the strong dual E’ of E is sequentially complete, let F be a closed linear subspace of E and let U be a uniformly open subset of E. We denote by Π: E → E/F the canonical quotient mapping. In §1 we study the factorization of uniformly holomorphic functions through π. In §2 we study F-quotients of uniform type and introduce the concept of envelope of uF-holomorphy of a connected uniformly open subset U of E. The main result states that the...

Germs of holomorphic mappings between real algebraic hypersurfaces

Nordine Mir (1998)

Annales de l'institut Fourier

We study germs of holomorphic mappings between general algebraic hypersurfaces. Our main result is the following. If ( M , p 0 ) and ( M ' , p 0 ' ) are two germs of real algebraic hypersurfaces in N + 1 , N 1 , M is not Levi-flat and H is a germ at p 0 of a holomorphic mapping such that H ( M ) M ' and Jac ( H ) 0 then the so-called reflection function associated to H is always holomorphic algebraic. As a consequence, we obtain that if M ' is given in the so-called normal form, the transversal component of H is always algebraic. Another corollary of...

Global time estimates for solutions to equations of dissipative type

Michael Ruzhansky, James Smith (2005)

Journées Équations aux dérivées partielles

Global time estimates of L p - L q norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.

Graphs with multiple sheeted pluripolar hulls

Evgeny Poletsky, Jan Wiegerinck (2006)

Annales Polonici Mathematici

We study the pluripolar hulls of analytic sets. In particular, we show that hulls of graphs of analytic functions can be multiple sheeted and sheets can be separated by a set of zero dimension.

Hartog's phenomenon for polyregular functions and projective dimension of related modules over a polynomial ring

William W. Adams, Philippe Loustaunau, Victor P. Palamodov, Daniele C. Struppa (1997)

Annales de l'institut Fourier

In this paper we prove that the projective dimension of n = R 4 / A n is 2 n - 1 , where R is the ring of polynomials in 4 n variables with complex coefficients, and A n is the module generated by the columns of a 4 × 4 n matrix which arises as the Fourier transform of the matrix of differential operators associated with the regularity condition for a function of n quaternionic variables. As a corollary we show that the sheaf of regular functions has flabby dimension 2 n - 1 , and we prove a cohomology vanishing theorem for open...

Hartogs type extension theorems on some domains in Kähler manifolds

Takeo Ohsawa (2012)

Annales Polonici Mathematici

Given a locally pseudoconvex bounded domain Ω, in a complex manifold M, the Hartogs type extension theorem is said to hold on Ω if there exists an arbitrarily large compact subset K of Ω such that every holomorphic function on Ω-K is extendible to a holomorphic function on Ω. It will be reported, based on still unpublished papers of the author, that the Hartogs type extension theorem holds in the following two cases: 1) M is Kähler and ∂Ω is C²-smooth and not Levi flat; 2) M is compact Kähler and...

Currently displaying 121 – 140 of 347