A theorem on complete intersection curves and a consequence for the runge problem for analytic sets
Soit un groupe de Lie complexe et une forme réelle fermée de . Un couple est dit pseudo-convexe, s’il existe sur une fonction régulière, strictement p.s.h., invariante par l’action de et d’exhaustion sur . On dit que est à spectre imaginaire pur, si pour tout de Lie, les valeurs propres de ad sont imaginaires pures. Pour à radical simplement connexe, cette dernière propriété équivaut à la pseudo-convexité de . Pour pseudo-convexe et sous une hypothèse de sous-groupe discret,...
This note contains an approximation theorem that implies that every compact subset of is a good compact set in the sense of Martineau. The property in question is fundamental for the extension of analytic functionals. The approximation theorem depends on a finiteness result about certain polynomially convex hulls.
The paper gives sufficient conditions for projections of certain pseudoconcave sets to be open. More specifically, it is shown that the range of an analytic set-valued function whose values are simply connected planar continua is open, provided there does not exist a point which belongs to boundaries of all the fibers. The main tool is a theorem on existence of analytic discs in certain polynomially convex hulls, obtained earlier by the author.
Let be a two dimensional totally real submanifold of class in . A continuous map of the closed unit disk into that is holomorphic on the open disk and maps its boundary into is called an analytic disk with boundary in . Given an initial immersed analytic disk with boundary in , we describe the existence and behavior of analytic disks near with boundaries in small perturbations of in terms of the homology class of the closed curve in . We also prove a regularity theorem...
On étudie l’approximation des fonctions holomorphes dans un ouvert de , qui satisfont des hypothèses de croissance, par des fonctions holomorphes dans un ouvert plus grand et qui satisfont des hypothèses de croissance plus strictes. Les hypothèses de croissance sont définies par des poids , avec , auxquels sont associées des algèbres . On établit en particulier un théorème d’approximation des fonctions de par celles de lorsque a une propriété de convexité convenable relativement aux fonctions...