Holomorphic Approximation near Strictly Pseudoconvex Boundary Points.
The purpose of this paper is to take a closer look at uniform semi-global (i.e. on compact subsets) holomorphic approximation of CR functions on tubular submanifolds in ℂ².
Let be an open set of a Stein manifold of dimension such that for . We prove that is Stein if and only if every topologically trivial holomorphic line bundle on is associated to some Cartier divisor on .
Let D be an open subset of a two-dimensional Stein manifold S. Then D is Stein if and only if every holomorphic line bundle L on D is the line bundle associated to some (not necessarily effective) Cartier divisor 𝔡 on D.
We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.
We construct a non-polynomially convex compact subset of the unit torus in with polynomially convex hull containing no analytic structure.
This paper is devoted to internal capacity characteristics of a domain D ⊂ ℂⁿ, relative to a point a ∈ D, which have their origin in the notion of the conformal radius of a simply connected plane domain relative to a point. Our main goal is to study the internal Chebyshev constants and transfinite diameters for a domain D ⊂ ℂⁿ and its boundary ∂D relative to a point a ∈ D in the spirit of the author's article [Math. USSR-Sb. 25 (1975), 350-364], where similar characteristics have been investigated...
A necessary and sufficient condition is obtained for a discrete multiplicity variety to be an interpolating variety for the space .
Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual bounded sequence...
A sufficient condition is given to make a sequence of hyperplanes in the complex unit ball an interpolating sequence for , i.e. bounded holomorphic functions on the hyperplanes can be boundedly extended.