Displaying 161 – 180 of 415

Showing per page

Holomorphic line bundles and divisors on a domain of a Stein manifold

Makoto Abe (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let D be an open set of a Stein manifold X of dimension n such that H k ( D , 𝒪 ) = 0 for 2 k n - 1 . We prove that D is Stein if and only if every topologically trivial holomorphic line bundle L on D is associated to some Cartier divisor 𝔡 on D .

Holomorphic submersions from Stein manifolds

Franc Forstnerič (2004)

Annales de l’institut Fourier

We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.

Hulls of subsets of the torus in 2

Herbert Alexander (1998)

Annales de l'institut Fourier

We construct a non-polynomially convex compact subset of the unit torus in 2 with polynomially convex hull containing no analytic structure.

Internal characteristics of domains in ℂⁿ

Vyacheslav Zakharyuta (2014)

Annales Polonici Mathematici

This paper is devoted to internal capacity characteristics of a domain D ⊂ ℂⁿ, relative to a point a ∈ D, which have their origin in the notion of the conformal radius of a simply connected plane domain relative to a point. Our main goal is to study the internal Chebyshev constants and transfinite diameters for a domain D ⊂ ℂⁿ and its boundary ∂D relative to a point a ∈ D in the spirit of the author's article [Math. USSR-Sb. 25 (1975), 350-364], where similar characteristics have been investigated...

Interpolating sequences, Carleson measures and Wirtinger inequality

Eric Amar (2008)

Annales Polonici Mathematici

Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure μ S : = a S ( 1 - | a | ² ) δ a is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure μ S bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual bounded sequence...

Currently displaying 161 – 180 of 415