Deformations of a strongly pseudo-convex domain of complex dimension ≥ 4
We study compact Kähler manifolds admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of , and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of . We extend Calabi’s theorem on the structure of compact Kähler...
Twilled L(ie-)R(inehart)-algebras generalize, in the Lie-Rinehart context, complex structures on smooth manifolds. An almost complex manifold determines an "almost twilled pre-LR algebra", which is a true twilled LR-algebra iff the almost complex structure is integrable. We characterize twilled LR structures in terms of certain associated differential (bi)graded Lie and G(erstenhaber)-algebras; in particular the G-algebra arising from an almost complex structure is a (strict) d(ifferential) G-algebra...
We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) -dimensional symplectic manifolds endowed with a -tamed almost complex structure and with a nowhere vanishing and normalized section of the bundle satisfying the condition .We study the moduli space of QIS deformations of a given Calabi-Yau manifold, computing its tangent space and showing that is non obstructed. Finally, we present several examples of QIS manifolds.
Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of in , for some ) or differentiable (parametrized by an open neighborhood of in , for some ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point of the parameter space, the fiber over of the first family is biholomorphic to the fiber over of the second family. Then, under which conditions are the...