Offenheit der Versalität in der analytischen Geoemtrie.
We give an explicit description of a non-normal irreducible subvariety of the moduli space of Riemann surfaces of genus 3 characterized by a non-cyclic group action. Defining equations of a family of curves representing non-normal points of this subvariety are computed. We also find defining equations of the family of hyperelliptic curves of genus 3 whose full automorphism group is C2 X C4. This completes the list of full automorphism groups of hyperelliptic curves.
Let Σ be a closed oriented Riemann surface of genus at least 2. By using symplectic chain complex, we construct a volume element for a Hitchin component of Hom(π₁(Σ),PSLₙ(ℝ))/PSLₙ(ℝ) for n > 2.
Given a non-singular holomorphic foliation on a compact manifold we analyze the relationship between the versal spaces and of deformations of as a holomorphic foliation and as a transversely holomorphic foliation respectively. With this purpose, we prove the existence of a versal unfolding of parametrized by an analytic space isomorphic to where is smooth and : is the forgetful map. The map is shown to be an epimorphism in two situations: (i) if , where is the sheaf of...
Consider a family of integral operators and a related family of differential operators, both defined on a class of analytic functions holomorphic in the unit disk, distortion properties of the real part are derived from a general aspect.