Artin-Gruppen und Coxeter-Gruppen.
We survey variations of the Bergman kernel and their asymptotic behaviors at degeneration. For a Legendre family of elliptic curves, the curvature form of the relative Bergman kernel metric is equal to the Poincaré metric on ℂ 0,1. The cases of other elliptic curves are either the same or trivial. Two proofs depending on elliptic functions’ special properties and Abelian differentials’ Taylor expansions are discussed, respectively. For a holomorphic family of hyperelliptic nodal or cuspidal curves...
We classify generic germs of contracting holomorphic mappings which factorize through blowing-ups, under the relation of conjugation by invertible germs of mappings. As for Hopf surfaces, this is the key to the study of compact complex surfaces with and which contain a global spherical shell. We study automorphisms and deformations and we show that these generic surfaces are endowed with a holomorphic foliation which is unique and stable under any deformation.
La cohomologie de Dolbeault feuilletée mesure l’obstruction à résoudre le problème de Cauchy-Riemann le long des feuilles d’un feuilletage complexe. En utilisant des méthodes de cohomologie des groupes, nous calculons cette cohomologie pour deux classes de feuilletages : i) le feuilletage complexe affine de Reeb de dimension (complexe) 2 sur la variété de Hopf de dimension 5 ; ii) les feuilletages complexes sur le tore hyperbolique (fibration en tores de dimension n au-dessus d’un cercle et de monodromie...