Holomorphic and Meromorphic Mappings and Curvature.
We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic -correspondences. We define an intrinsic logarithmic pseudo-volume form for every pair consisting of a complex manifold and a normal crossing Weil divisor on , the positive part of which is reduced. We then prove that is generically non-degenerate when is projective and ...
We define and investigate the notion of k-convexity in the sense of Mejia-Minda for domains in ℂⁿ and also that of k-convex mappings on the Euclidean unit ball.
Soit une application analytique propre entre des ouverts de , soit un sous-ensemble analytique de et soit . On donne des conditions pour que soit de codimension 1 dans .
Nous répondons à une conjecture de R. Coifman et R. Rochberg : dans le complexifié du cône sphérique de , le dual de la classe de Bergman s’obtient comme projection de Bergman de et coïncide avec la classe de Bloch des fonctions holomorphes. Nous examinons également le cas d’un produit de domaines.
In this paper we deal with several characterizations of the Hardy-Sobolev spaces in the unit ball of Cn, that is, spaces of holomorphic functions in the ball whose derivatives up to a certain order belong to the classical Hardy spaces. Some of our characterizations are in terms of maximal functions, area functions or Littlewood-Paley functions involving only complex-tangential derivatives. A special case of our results is a characterization of Hp itself involving only complex-tangential derivatives....