Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Schwarz Reflection Principle, Boundary Regularity and Compactness for J -Complex Curves

Sergey Ivashkovich, Alexandre Sukhov (2010)

Annales de l’institut Fourier

We establish the Schwarz Reflection Principle for J -complex discs attached to a real analytic J -totally real submanifold of an almost complex manifold with real analytic J . We also prove the precise boundary regularity and derive the precise convergence in Gromov compactness theorem in 𝒞 k , α -classes.

Some novel ways of generating Cantor and Julia type sets

Marta Kosek (2012)

Annales Polonici Mathematici

It is a survey article showing how an enhanced version of the Banach contraction principle can lead to generalizations of attractors of iterated function systems and to Julia type sets.

Spaces of geometrically generic configurations

Yoel Feler (2008)

Journal of the European Mathematical Society

Let X denote either ℂℙ m or m . We study certain analytic properties of the space n ( X , g p ) of ordered geometrically generic n -point configurations in X . This space consists of all q = ( q 1 , , q n ) X n such that no m + 1 of the points q 1 , , q n belong to a hyperplane in X . In particular, we show that for a big enough n any holomorphic map f : n ( ℂℙ m , g p ) n ( ℂℙ m , g p ) commuting with the natural action of the symmetric group 𝐒 ( n ) in n ( ℂℙ m , g p ) is of the form f ( q ) = τ ( q ) q = ( τ ( q ) q 1 , , τ ( q ) q n ) , q n ( ℂℙ m , g p ) , where τ : n ( ℂℙ m , g p ) 𝐏𝐒𝐋 ( m + 1 , ) is an 𝐒 ( n ) -invariant holomorphic map. A similar result holds true for mappings of the configuration space n ( m , g p ) .

Special normal form of a hyperbolic CR-manifold in ℂ⁴

Vladimir V. Ežov, Gerd Schmalz (1998)

Annales Polonici Mathematici

We give a special normal form for a non-semiquadratic hyperbolic CR-manifold M of codimension 2 in ℂ⁴, i.e., a construction of coordinates where the equation of M satisfies certain conditions. The coordinates are determined up to a linear coordinate change.

Spirallike mappings and univalent subordination chains in n

Ian Graham, Hidetaka Hamada, Gabriela Kohr, Mirela Kohr (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we consider non-normalized univalent subordination chains and the connection with the Loewner differential equation on the unit ball in n . To this end, we study the most general form of the initial value problem for the transition mapping, and prove the existence and uniqueness of solutions. Also we introduce the notion of generalized spirallikeness with respect to a measurable matrix-valued mapping, and investigate this notion from the point of view of non-normalized univalent subordination...

Stabilization of monomial maps in higher codimension

Jan-Li Lin, Elizabeth Wulcan (2014)

Annales de l’institut Fourier

A monomial self-map f on a complex toric variety is said to be k -stable if the action induced on the 2 k -cohomology is compatible with iteration. We show that under suitable conditions on the eigenvalues of the matrix of exponents of f , we can find a toric model with at worst quotient singularities where f is k -stable. If f is replaced by an iterate one can find a k -stable model as soon as the dynamical degrees λ k of f satisfy λ k 2 > λ k - 1 λ k + 1 . On the other hand, we give examples of monomial maps f , where this condition...

Strongly not relatives Kähler manifolds

Michela Zedda (2017)

Complex Manifolds

In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter...

Currently displaying 1 – 20 of 30

Page 1 Next