Displaying 281 – 300 of 463

Showing per page

On the dynamics of extendable polynomial endomorphisms of ℝ²

Ewa Ligocka (2007)

Annales Polonici Mathematici

We extend the results obtained in our previous paper, concerning quasiregular polynomials of algebraic degree two, to the case of polynomial endomorphisms of ℝ² whose algebraic degree is equal to their topological degree. We also deal with some other classes of polynomial endomorphisms extendable to ℂℙ².

On the existence of parabolic actions in convex domains of k + 1

François Berteloot, Ninh Van Thu (2015)

Czechoslovak Mathematical Journal

We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric.

On the Holomorphic Endomorphisms of the Ball

Giovanni Bassanelli (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia F un endomorfismo olomorfo della palla unitaria aperta B n di 𝐂 𝐧 . In questa nota proviamo che certe ipotesi minimali, relative al comportamento di F su un orociclo e vicino ad un punto del bordo, assicurano che F è un automorfismo olomorfo di B n .

On the Kähler Rank of Compact Complex Surfaces

Matei Toma (2008)

Bulletin de la Société Mathématique de France

Harvey and Lawson introduced the Kähler rank and computed it in connection to the cone of positive exact currents of bidimension ( 1 , 1 ) for many classes of compact complex surfaces. In this paper we extend these computations to the only further known class of surfaces not considered by them, that of Kato surfaces. Our main tool is the reduction to the dynamics of associated holomorphic contractions ( 2 , 0 ) ( 2 , 0 ) .

On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions

Xiaojun Huang (1994)

Annales de l'institut Fourier

In this paper, we show that if M 1 and M 2 are algebraic real hypersurfaces in (possibly different) complex spaces of dimension at least two and if f is a holomorphic mapping defined near a neighborhood of M 1 so that f ( M 1 ) M 2 , then f is also algebraic. Our proof is based on a careful analysis on the invariant varieties and reduces to the consideration of many cases. After a slight modification, the argument is also used to prove a reflection principle, which allows our main result to be stated for mappings...

On the removable singularities for meromorphic mappings.

Evgeny M. Chirka (1996)

Publicacions Matemàtiques

If E is a closed subset of locally finite Hausdorff (2n-2)-measure on an n-dimensional complex manifold Ω and all the points of E are nonremovable for a meromorphic mapping of Ω E into a compact Kähler manifold, then E is a pure (n-1)-dimensional complex analytic subset of Ω.

On the uniqueness problem for meromorphic mappings with truncated multiplicities

Feng Lü (2014)

Annales Polonici Mathematici

The purpose of this paper is twofold. The first is to weaken or omit the condition d i m f - 1 ( H i H j ) m - 2 for i ≠ j in some previous uniqueness theorems for meromorphic mappings. The second is to decrease the number q of hyperplanes H j such that f(z) = g(z) on j = 1 q f - 1 ( H j ) , where f,g are meromorphic mappings.

On topological classification of complex mappings

Hadi Seyedinejad, Ali Zaghian (2015)

Annales Polonici Mathematici

We study the topological invariant ϕ of Kwieciński and Tworzewski, particularly beyond the case of mappings with smooth targets. We derive a lower bound for ϕ of a general mapping, which is similarly effective as the upper bound given by Kwieciński and Tworzewski. Some classes of mappings are identified for which the exact value of ϕ can be computed. Also, we prove that the variation of ϕ on the source space of a mapping with a smooth target is semicontinuous in the Zariski topology.

Currently displaying 281 – 300 of 463