Displaying 81 – 100 of 463

Showing per page

Continuity and convergence properties of extremal interpolating disks.

Pascal J. Thomas (1995)

Publicacions Matemàtiques

Let a be a sequence of points in the unit ball of Cn. Eric Amar and the author have introduced the nonnegative quantity ρ(a) = infα infk Πj:j≠k dG(αj, αk), where dG is the Gleason distance in the unit disk and the first infimum is taken over all sequences α in the unit disk which map to a by a map from the disk to the ball.The value of ρ(a) is related to whether a is an interpolating sequence with respect to analytic disks passing through it, and if a is an interpolating sequence in the ball, then...

Converging semigroups of holomorphic maps

Marco Abate (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we study the semigroups Φ : + H o l ( D , D ) of holomorphic maps of a strictly convex domain D 𝐂 n into itself. In particular, we characterize the semigroups converging, uniformly on compact subsets, to a holomorphic map h : D 𝐂 n .

Courants dynamiques pluripolaires

Xavier Buff (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

On montre l’existence d’applications rationnelles f : k k telles que f est algébriquement stable  : pour tout n 0 , deg f n = ( deg f ) n ,il existe un unique courant positif fermé T de bidegré ( 1 , 1 ) vérifiant f * T = d · T et k T ω k - 1 = 1 ω est la forme de Fubini-Study sur k et T est pluripolaire  : il existe un ensemble pluripolaire X k tel que X T ω k - 1 = 1

Decay of volumes under iteration of meromorphic mappings

Vincent Guedj (2004)

Annales de l'Institut Fourier

Let f be a meromorphic self-mapping of a compact Kähler manifold. We study the rate of decreasing of volumes under the iteration of f . We use these volume estimates to construct the Green current of f in a quite general setting.

Deformation of holomorphic maps onto Fano manifolds of second and fourth Betti numbers 1

Jun-Muk Hwang (2007)

Annales de l’institut Fourier

Let X be a Fano manifold with b 2 = 1 different from the projective space such that any two surfaces in X have proportional fundamental classes in H 4 ( X , C ) . Let f : Y X be a surjective holomorphic map from a projective variety Y . We show that all deformations of f with Y and X fixed, come from automorphisms of X . The proof is obtained by studying the geometry of the integral varieties of the multi-valued foliation defined by the variety of minimal rational tangents of X .

Currently displaying 81 – 100 of 463