Compact moduli spaces of stable sheaves over non-algebraic surfaces.
Le théorème de régularisation de Demailly ramène l’existence d’une métrique kählérienne sur une surface compacte à celle d’un (1-1)-courant strictement positif -fermé (“courant kählérien”). Après avoir démontré un critère d’existence d’un tel courant, nous utilisons la symétrie de Hodge pour donner une démonstration unifiée du caractère kählérien des surfaces compactes à premier nombre de Betti pair.
En résumé, on retiendra que seules les surfaces d’Inoue-Hirzebruch et les surfaces génériques admettent un feuilletage holomorphe. Sur les surfaces d’Inoue-Hirzebruch il existe exactement deux feuilletages et sur les surfaces génériques au plus un. Le lieu singulier de la réunion des courbes rationnelles coïncide avec le lieu singulier du feuilletage. Les courbes rationnelles sont des feuilles en dehors des points singuliers du feuilletage.
For any minimal compact complex surface S with n = b2(S) > 0 containing global spherical shells (GSS) we study the effectiveness of the 2n parameters given by the n blown up points. There exists a family of surfaces S → B with GSS which contains as fibers S, some Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically effective parameters. These families are versal outside a non empty hypersurface T ⊂ B. We deduce that, for any configuration of rational curves,...
We study the compact Hermitian spin surfaces with positive conformal scalar curvature on which the first eigenvalue of the Dolbeault operator of the spin structure is the smallest possible. We prove that such a surface is either a ruled surface or a Hopf surface. We give a complete classification of the ruled surfaces with this property. For the Hopf surfaces we obtain a partial classification and some examples