Scalar-flat Kähler metrics with SU (2) symmetry.
We study the Jones and Tod correspondence between selfdual conformal -manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl -manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence...
In this survey, we present recent techniques on the theory of harmonic integrals to study the cohomology groups of the adjoint bundle with the multiplier ideal sheaf of singular metrics. As an application, we give an analytic version of the injectivity theorem.
A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite...
Let denote a holomorphic bundle with fiber and with basis . Both and are assumed to be Stein. For a Reinhardt bounded domain of dimension or , we give a necessary and sufficient condition on for the existence of a non-Stein such (Theorem ); for , we give necessary and sufficient criteria for to be Stein (Theorem ). For a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for to be Stein (Theorem ).