Page 1

Displaying 1 – 5 of 5

Showing per page

Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique

Jacques Faraut (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A Gutzmer formula for the complexification of a Riemann symmetric space. We consider a complex manifold Ω and a real Lie group G of holomorphic automorphisms of Ω . The question we study is, for a holomorphic function f on Ω , to evaluate the integral of f 2 over a G -orbit by using the harmonic analysis of G . When Ω is an annulus in the complex plane and G the rotation group, it is solved by a classical formula which is sometimes called Gutzmer’s formula. We establish a generalization of it when Ω is...

Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program

Khalid Koufany, Bent Ørsted (1996)

Annales de l'institut Fourier

For the scalar holomorphic discrete series representations of SU ( 2 , 2 ) and their analytic continuations, we study the spectrum of a non-compact real form of the maximal compact subgroup inside SU ( 2 , 2 ) . We construct a Cayley transform between the Ol’shanskiĭ semigroup having U ( 1 , 1 ) as Šilov boundary and an open dense subdomain of the Hermitian symmetric space for SU ( 2 , 2 ) . This allows calculating the composition series in terms of harmonic analysis on U ( 1 , 1 ) . In particular we show that the Ol’shanskiĭ Hardy space for U ( 1 , 1 ) is different...

Currently displaying 1 – 5 of 5

Page 1