Previous Page 2

Displaying 21 – 34 of 34

Showing per page

Toeplitz-Berezin quantization and non-commutative differential geometry

Harald Upmeier (1997)

Banach Center Publications

In this survey article we describe how the recent work in quantization in multi-variable complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads to interesting results and problems in C*-algebras which can be viewed as examples of the "non-commutative geometry" in the sense of A. Connes. At the same time, one obtains new functional calculi (of pseudodifferential type) with possible applications to partial differential equations and group representations.

Two remarks on Kähler homogeneous manifolds

Bruce Gilligan, Karl Oeljeklaus (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove that every Kähler solvmanifold has a finite covering whose holomorphic reduction is a principal bundle. An example is given that illustrates the necessity, in general, of passing to a proper covering. We also answer a stronger version of a question posed by Akhiezer for homogeneous spaces of nonsolvable algebraic groups in the case where the isotropy has the property that its intersection with the radical is Zariski dense in the radical.

Currently displaying 21 – 34 of 34

Previous Page 2