The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Weyl calculus for complex and real symmetric domains

Jonathan Arazy, Harald Upmeier (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We define the Weyl functional calculus for real and complex symmetric domains, and compute the associated Weyl transform in the rank 1 case.

Weyl quantization for the semidirect product of a compact Lie group and a vector space

Benjamin Cahen (2009)

Commentationes Mathematicae Universitatis Carolinae

Let G be the semidirect product V K where K is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space V . Let 𝒪 be a coadjoint orbit of G associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation π of G . We consider the case when the corresponding little group H is the centralizer of a torus of K . By dequantizing a suitable realization of π on a Hilbert space of functions on n where n = dim ( K / H ) , we construct a symplectomorphism between...

When does a Bounded Domain Cover a Projective Manifold? (Survey)

Kasparian, Azniv (1997)

Serdica Mathematical Journal

* The research has been partially supported by Bulgarian Funding Organizations, sponsoring the Algebra Section of the Mathematics Institute, Bulgarian Academy of Sciences, a Contract between the Humboldt Univestit¨at and the University of Sofia, and Grant MM 412 / 94 from the Bulgarian Board of Education and TechnologyThe present survey introduces in some classical properties of the universal coverings of the projective algebraic manifolds. All the results are non-original. A forthcoming note is...

When is a Riesz distribution a complex measure?

Alan D. Sokal (2011)

Bulletin de la Société Mathématique de France

Let α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α . I give an elementary proof of the necessary and sufficient condition for α to be a locally finite complex measure (= complex Radon measure).

Currently displaying 1 – 6 of 6

Page 1