The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Inner Carathéodory completeness of Reinhardt domains

Włodzimierz Zwonek (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give a description of bounded pseudoconvex Reinhardt domains, which are complete for the Carathéodory inner distance.

Intrinsic pseudo-volume forms for logarithmic pairs

Thomas Dedieu (2010)

Bulletin de la Société Mathématique de France

We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic K -correspondences. We define an intrinsic logarithmic pseudo-volume form Φ X , D for every pair ( X , D ) consisting of a complex manifold X and a normal crossing Weil divisor D on X , the positive part of which is reduced. We then prove that Φ X , D is generically non-degenerate when X is projective and K X + D ...

Currently displaying 1 – 4 of 4

Page 1