Schottky-Landau growth estimates for s-normal families of holomorphic mappings.
Page 1
M.G. Zaidenberg (1992)
Mathematische Annalen
Sergey Ivashkovich, Jean-Pierre Rosay (2004)
Annales de l'Institut Fourier
The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is similar to its definition for complex manifolds. We study the question of completeness of some domains for this metric. In particular, we study the completeness of the complement of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of basic facts in the theory of pseudo-holomorphic discs.
Junehyuk Jung (2014)
Journal of the European Mathematical Society
Let be a hyperbolic surface and let be a Laplacian eigenfunction having eigenvalue with . Let be the set of nodal lines of . For a fixed analytic curve of finite length, we study the number of intersections between and in terms of . When is compact and a geodesic circle, or when has finite volume and is a closed horocycle, we prove that is “good” in the sense of [TZ]. As a result, we obtain that the number of intersections between and is . This bound is sharp.
Fathi Haggui, Adel Khalfallah (2010)
Annales Polonici Mathematici
First, we give some characterizations of the Kobayashi hyperbolicity of almost complex manifolds. Next, we show that a compact almost complex manifold is hyperbolic if and only if it has the Δ*-extension property. Finally, we investigate extension-convergence theorems for pseudoholomorphic maps with values in pseudoconvex domains.
Kyong T. Hahn (1981)
Annales Polonici Mathematici
Nessim Sibony, Pit-Mann Wong (1981)
Annales Polonici Mathematici
Konrad Peters (1974)
Mathematische Annalen
Klas Diederich, John Erik Fornaess (1978)
Manuscripta mathematica
Jean-Pierre Vigué (1996)
Annales de l'institut Fourier
Dans cet article, je montre qu’un domaine est hyperbolique pour la pseudodistance intégrée de Carathéodory (c’est-à-dire que est une distance sur ) si et seulement si la pseudodistance de Carathéodory vérifie la propriété de séparation faible suivante : tout point de possède un voisinage tel que, pour tout point de , , . Je construis aussi un exemple d’un domaine -hyperbolique et non -hyperbolique.
Page 1