Displaying 61 – 80 of 338

Showing per page

Characterization of global Phragmén-Lindelöf conditions for algebraic varieties by limit varieties only

Rüdiger W. Braun, Reinhold Meise, B. A. Taylor (2006)

Annales Polonici Mathematici

For algebraic surfaces, several global Phragmén-Lindelöf conditions are characterized in terms of conditions on their limit varieties. This shows that the hyperbolicity conditions that appeared in earlier geometric characterizations are redundant. The result is applied to the problem of existence of a continuous linear right inverse for constant coefficient partial differential operators in three variables in Beurling classes of ultradifferentiable functions.

Chebyshev and Robin constants on algebraic curves

Jesse Hart, Sione Ma`u (2015)

Annales Polonici Mathematici

We define directional Robin constants associated to a compact subset of an algebraic curve. We show that these constants satisfy an upper envelope formula given by polynomials. We use this formula to relate the directional Robin constants of the set to its directional Chebyshev constants. These constants can be used to characterize algebraic curves on which the Siciak-Zaharjuta extremal function is harmonic.

Classes de Nevanlinna sur une intersection d'ouverts strictement pseudoconvexes.

Chantal Menini (1995)

Publicacions Matemàtiques

On a finite intersection of strictly pseudoconvex domains we define two kinds of natural Nevanlinna classes in order to take the growth of the functions near the sides or the edges into account. We give a sufficient Blaschke type condition on an analytic set for being the zero set of a function in a given Nevanlinna class. On the other hand we show that the usual Blaschke condition is not necessary here.

∂̅-cohomology and geometry of the boundary of pseudoconvex domains

Takeo Ohsawa (2007)

Annales Polonici Mathematici

In 1958, H. Grauert proved: If D is a strongly pseudoconvex domain in a complex manifold, then D is holomorphically convex. In contrast, various cases occur if the Levi form of the boundary of D is everywhere zero, i.e. if ∂D is Levi flat. A review is given of the results on the domains with Levi flat boundaries in recent decades. Related results on the domains with divisorial boundaries and generically strongly pseudoconvex domains are also presented. As for the methods, it is explained how Hartogs...

Complete pluripolar curves and graphs

Tomas Edlund (2004)

Annales Polonici Mathematici

It is shown that there exist C functions on the boundary of the unit disk whose graphs are complete pluripolar. Moreover, for any natural number k, such functions are dense in the space of C k functions on the boundary of the unit disk. We show that this result implies that the complete pluripolar closed C curves are dense in the space of closed C k curves in ℂⁿ. We also show that on each closed subset of the complex plane there is a continuous function whose graph is complete pluripolar.

Complete pluripolar graphs in N

Nguyen Quang Dieu, Phung Van Manh (2014)

Annales Polonici Mathematici

Let F be the Cartesian product of N closed sets in ℂ. We prove that there exists a function g which is continuous on F and holomorphic on the interior of F such that Γ g ( F ) : = ( z , g ( z ) ) : z F is complete pluripolar in N + 1 . Using this result, we show that if D is an analytic polyhedron then there exists a bounded holomorphic function g such that Γ g ( D ) is complete pluripolar in N + 1 . These results are high-dimensional analogs of the previous ones due to Edlund [Complete pluripolar curves and graphs, Ann. Polon. Math. 84 (2004), 75-86]...

Concerning the energy class p for 0 < p < 1

Per Åhag, Rafał Czyż, Pham Hoàng Hiêp (2007)

Annales Polonici Mathematici

The energy class p is studied for 0 < p < 1. A characterization of certain bounded plurisubharmonic functions in terms of p and its pluricomplex p-energy is proved.

Continuity of plurisubharmonic envelopes

Nihat Gokhan Gogus (2005)

Annales Polonici Mathematici

Let D be a domain in ℂⁿ. The plurisubharmonic envelope of a function φ ∈ C(D̅) is the supremum of all plurisubharmonic functions which are not greater than φ on D. A bounded domain D is called c-regular if the envelope of every function φ ∈ C(D̅) is continuous on D and extends continuously to D̅. The purpose of this paper is to give a complete characterization of c-regular domains in terms of Jensen measures.

Continuity of the relative extremal function on analytic varieties in ℂⁿ

Frank Wikström (2005)

Annales Polonici Mathematici

Let V be an analytic variety in a domain Ω ⊂ ℂⁿ and let K ⊂ ⊂ V be a closed subset. By studying Jensen measures for certain classes of plurisubharmonic functions on V, we prove that the relative extremal function ω K is continuous on V if Ω is hyperconvex and K is regular.

Continuous pluriharmonic boundary values

Per Åhag, Rafał Czyż (2007)

Annales Polonici Mathematici

Let D j be a bounded hyperconvex domain in n j and set D = D × × D s , j=1,...,s, s≥ 3. Also let ₙ be the symmetrized polydisc in ℂⁿ, n ≥ 3. We characterize those real-valued continuous functions defined on the boundary of D or ₙ which can be extended to the inside to a pluriharmonic function. As an application a complete characterization of the compliant functions is obtained.

Convergence in Capacity

Yang Xing (2008)

Annales de l’institut Fourier

We study the relationship between convergence in capacities of plurisubharmonic functions and the convergence of the corresponding complex Monge-Ampère measures. We find one type of convergence of complex Monge-Ampère measures which is essentially equivalent to convergence in the capacity C n of functions. We also prove that weak convergence of complex Monge-Ampère measures is equivalent to convergence in the capacity C n - 1 of functions in some case. As applications we give certain stability theorems...

Convergence in capacity

Pham Hoang Hiep (2008)

Annales Polonici Mathematici

We prove that if ( Ω ) u j u ( Ω ) in Cₙ-capacity then l i m i n f j ( d d c u j ) n 1 u > - ( d d c u ) n . This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.

Currently displaying 61 – 80 of 338