Harmonic majorants for plurisubharmonic functions on bounded symmetric domains with applications to the spaces H... and N*.
We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.
Let be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on with right hand side, . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range of the complex Monge-Ampère operator acting on -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with -density belong to and proving that has the...
We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is and the right hand side has a density in for some p > 1, and prove the Hölder continuity of the solution.
We point out relations between Siciak’s homogeneous extremal function and the Cauchy-Poisson transform in case is a ball in ℝ². In particular, we find effective formulas for for an important class of balls. These formulas imply that, in general, is not a norm in ℂ².
Let be a dominant rational map of such that there exists with for all . Under mild hypotheses, we show that, for outside a pluripolar set of , the map admits a hyperbolic measure of maximal entropy with explicit bounds on the Lyapunov exponents. In particular, the result is true for polynomial maps hence for the homogeneous extension of to . This provides many examples where non uniform hyperbolic dynamics is established.One of the key tools is to approximate the graph of a meromorphic...
We show that a bounded pseudoconvex domain D ⊂ ℂⁿ is hyperconvex if its boundary ∂D can be written locally as a complex continuous family of log-Lipschitz curves. We also prove that the graph of a holomorphic motion of a bounded regular domain Ω ⊂ ℂ is hyperconvex provided every component of ∂Ω contains at least two points. Furthermore, we show that hyperconvexity is a Hölder-homeomorphic invariant for planar domains.