Densité des fonctions plurisousharmoniques
Let be a closed polar subset of a domain in . We give a complete description of the pluripolar hull of the graph of a holomorphic function defined on . To achieve this, we prove for pluriharmonic measure certain semi-continuity properties and a localization principle.
We prove a disc formula for the weighted Siciak-Zahariuta extremal function for an upper semicontinuous function q on an open connected subset X in ℂⁿ. This function is also known as the weighted Green function with logarithmic pole at infinity and weighted global extremal function.
We establish plurisubharmonicity of envelopes of certain classical disc functionals on locally irreducible complex spaces, thereby generalizing the corresponding results for complex manifolds. We also find new formulae expressing the Siciak-Zaharyuta extremal function of an open set in a locally irreducible affine algebraic variety as the envelope of certain disc functionals, similarly to what has been done for open sets in ℂⁿ by Lempert and by Lárusson and Sigurdsson.
Given an irreducible algebraic curves in , let be the dimension of the complex vector space of all holomorphic polynomials of degree at most restricted to . Let be a nonpolar compact subset of , and for each choose points in . Finally, let be the -th Lebesgue constant of the array ; i.e., is the operator norm of the Lagrange interpolation operator acting on , where is the Lagrange interpolating polynomial for of degree at the points . Using techniques of pluripotential...
We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points...
We study the dynamics near infinity of polynomial mappings f in C2. We assume that f has indeterminacy points and is non constant on the line at infinity L∞. If L∞ is f-attracting, we decompose the Green current along itineraries defined by the indeterminacy points and their preimages. The symbolic dynamics that arises is a subshift on an infinite alphabet.